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On Atomic Norms
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How many linear measurements do you need to (efficiently) recover a low rank matrix? What about a sparse
vector or an orthogonal matrix? Given that we know our object of interest has some ‘structure’, can we answer
this question in a general manner?

In this article, I will show you one approach to do so; regression using atomic norms. Most of the mate-
rial I will cover was presented in the paper, “The Convex Geometry of Linear Inverse Problems” by Venkat
Chandrasekaran, et. al.

I will begin by describing the problem of structured recovery with a few motivating examples. I will then
review some facts about convex geometry and what atomic norms are in this context. Next, I will show how
these properties translate to sharp recovery guarantees, instantiating the framework with two examples; the
recovery of low-rank matrices and orthogonal matrices.

There are several more examples described in the paper that I will not talk about. Notably, I will not cover
the details about theta bodies, approximations that the authors present, which trade off sample complexity for
computational efficiency.

1. Motivation: Recovering under-determined objects using structure

The problem of recovering sparse but high-dimensional vectors from data (“compressed sensing”) has seen recent
success in applications to genotyping, medical imaging and comes up commonly when dealing with sensor data.
Similarly, the recovery of low-rank matrices and tensors has been used to analyze fMRI data. It also comes
up in the recovery of signal from only the magnitude measurements (i.e. without phase), using the PhaseLift
algorithm.

1.1. The Mixture of Linear Regressions

Personally, I came to be interested in this formulation from my work on applying the method of moments to
the mixture of linear regressions, with Percy Liang. In that algorithm, we provided a consistent estimator for
the discriminative model where we observe data (yi, xi), where yi = βTh xi + εi and βh is one of β1, β2, . . . βk; we
do not observe which and do not know what the βh are.

The problem is to learn the {βh}kh=1, and we do so by observing that y2
i are linear measurements of Eh[β⊗2

h ],
etc. After recovering these moments, we apply standard techniques to recover {βh}. In these regression
problems, we exploited the low-rank structure to recover the moments with just O(kd) samples instead of
potentially O(d3) samples!

The results of this paper allow us, conceptually at least, to extend this approach to efficiently recover the
moments from some linear measurements.

2. The Structured Recovery Problem

I will now talk about the exact problem we are looking at. This needs some definitions.
Suppose that the object (matrix, tensor, etc.) we wish to recover is the convex combination of a few “atoms”

in the atomic set A,
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x∗ =
k∑
i=1

ciai, ai ∈ A, ci > 0.

We can define the atomic norm of this set to be,

‖x‖A = inf{t : x ∈ t convA}. (1)

Intuitively, this function tells us how much we need to scale A so that it’s convex hull contains x. In
principle, ‖ · ‖A is only a norm when A is “centrally symmetric” (a ∈ A ⇐⇒ −a ∈ A). The results in the
paper extend to non-centrally symmetric A as well, so we will just assume that ‖ · ‖A is a valid norm here.

Examples. Two standard choices for A are the set of 1-sparse vectors (for sparse recovery) and set of rank-
one matrices (for low rank recovery). The corresponding norms are, as expected, the L1, ‖ · ‖1, norm and the
nuclear norm, ‖ · ‖∗.

Let Φ be a linear measurement operator. We wish to ask, how many linear measurements y = Φx∗ are
required to exactly recover x∗ from the convex program,

x̂ = arg min
x
‖x‖A (2)

subject to y = Φx.

The approach also handles the case where the observations are noisy, y = Φx∗ + ω, where ||ω||2 ≤ δ;

x̂ = arg min
x
‖x‖A (3)

subject to ‖y − Φx‖2 ≤ δ.

In this case, we will ask instead for the number samples required so that ||x̂− x∗|| ≤ ε for any ε.

2.1. Convex Geometry Prelimnaries

Before we proceed, I will need to review a few simple but crucial concepts from convex geometry.
The tangent cone, TA(x), gives the directions that decrease ‖ · ‖A,

TA(x) = cone{z − x : ‖z‖A ≤ ‖x‖A}. (4)

Similarly, we can define the normal cone,

NA(x) = {s : 〈s, z − x〉 ≤ 0 ∀z : ‖z‖A ≤ ‖x‖A}. (5)

Finally, the polar of a cone C∗ is the set of vectors that are obtuse with respect to all vectors in C.

C∗ = {x ∈ <p : 〈x, z〉 ≤ 0 ∀z ∈ C}. (6)

Note that the polar cone of the tangent cone is the normal cone, and vice versa.

Examples. In the L2 case, i.e. the elements A have no structural constraints, the tangent cone is the half
space, and the normal cone is the normal of this halfspace. In the L1 case, the tangent cone is the cone extending
from edges of the l1 ball; the normal cone is the cone bounded by the normals of these two.
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3. Recovering x∗

We have finally come to the meat of this article; in this section, we will study how the properties of the atomic
set, A, relate to difficulty of recovering x∗.

The first result should illuminate why this approach will work.

Lemma 1 (Exact Recovery) x∗ is a unique solution to the exact optimization problemEquation (2) iff the
tangent cone of the atomic norm at the minimizer and the null-space of the observation operator are transverse,

TA(x∗) ∪ (Φ) = {0}. (7)

Recall that the tangent cone TA(x∗) gives the descent directions of the objective function (‖ · ‖A) and if
δ ∈ (Φ), then δ = 0. Thus, we could move δ along these directions and reduce the objective without violating
the constraint y = Φx.

Now, when we have noisy measurements, we need a stronger condition; that the measurement operator have
a “noticeable” projection on the descent directions in TA(x∗).

Lemma 2 (Noisy Recovery) Let y = Φx∗ + ω, ‖ω‖ ≤ δ be n noisy measurements and x̂ be the optimal solution
to the noisy optimization problemEquation (3). If, for all z ∈ TA(x∗), the measurements are bounded below,

‖Φz‖ ≥ ε‖z‖ ∀ z ∈ TA(x∗), (8)

then ‖x̂− x∗‖ ≤ 2δ
ε .

Proof As x̂ minimizes ‖ · ‖A in the program, we have that ‖x̂‖A ≤ ‖x∗‖A and thus that x̂ − x∗ ∈ TA(x∗).
Using the linearity of Φ and the triangle inequality, we derive that,

‖Φ(x̂− x∗)‖A ≤ ‖Φx̂− y‖A + ‖Φx∗ − y‖A
≤ 2δ,

where the first term is upper bounded by δ by the optimization program, and the second term is upper bounded
by δ from assumptions on ω.

Finally, using the assumption on Φ, ‖Φ(x̂− x∗)‖A ≥ ε‖x̂− x∗‖A, giving us the finaly result.

Φ is a random quantity, so we will have to show that with sufficient samples, the transversity conditions,
(7) and (8), hold with high probability. Note that the assumptions for Lemma 2 subsume those for Lemma 1;
it is sufficient for us to estimate a lower bound on

ε = inf
z∈TA

(x∗)
||Φz||A
||z||A

. (9)

This quantity will be referred to as the minimum gain of the measurement operator restricted to the cone
TA(x∗).

Aside: Atomic norms are the “best” convex heuristic. One intuition to use the atomic norm is as
follows. A basic condition we’d like for heuristic penalty is that it be constant for each atom in the set A.
Consequently, a − a′ should be a descent direction for any a, a′ ∈ A. Requiring that the penalty be convex
implies that the set of descent directions {a − a′ | a, a′ ∈ A} should be a cone. This is precisely the tangent
cone at a ∈ A with respect to conv(A).
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3.1. Gaussian widths and bounding minimum gain

As we noted above, the number of samples required for recovery are determined by minimum gain of Φ. We
will now characterize this quantity in terms of the Gaussian width of the tangent cone, defined below,

Definition 3 The Gaussian width of a set S ⊂ <p is,

w(S) = Eg∼N (0,In)[sup
z∈S

gT z].

Of course, because of the linearity of Φ, the minimum gain is independent of the length of z so, bounding
||Φz||A on Ω = TA(x∗) ∩ Sp−1 is sufficient to bound ||Φz||A on TA.

Yehoram Gordon[pdf] proved the following key result on when a random subspace escapes a “mesh” in <n,
\begin{theorem} Let Ω ⊂ Sp−1 and Φ : <p → <n be a random map with i.i.d. standard Gaussian entries. Then,

E[min
z∈Ω
‖Φz‖2] ≥ λn − w(Ω), (10)

where λn is the expected length of a n-dimensional Gaussian vector, Eg∼N (0,In)[||g||2]. \end{theorem}
The proof follows from a generalization of the Sudakov-Fernique inequality. It is also useful to note that

λk =
√

2Γ(k+1
2 )Γ(k2 ), which is tightly bounded, k√

k+1
≤ λk ≤

√
k.

3.2. Main Theorem: Exponential Convergence to x∗

We are finally ready to state and prove the main theorem which shows that we need about w(Ω)2 samples to
exponentially convergence to x∗. Theorem 3.1 gives us on the minimum gain that holds in expectation. To
extend it to the finite sample regime, we’ll exploit the property that Φ → minz∈Ω ||Φz||2 is Lipschitz (with
constant 1) and use the concentration of Gaussian measures to show convergence.

Theorem 4 Let Φ be a random map with rows drawn i.i.d. from N (0, 1
nIn) and Ω = TA(x∗) ∩ Sp−1. Then

1. Given measurements y = Φx∗, then x∗ is the unique solution of the the convex program Equation (2)
with probability at least 1− exp(−1

2(λn − w(Ω))2), if n ≥ w(Ω)2 + 1.
2. Given measurements y = Φx∗ + ω, ‖ω‖2 ≤ δ, then the solution x̂ of the the convex program Equation (3)

satisfies ‖x∗ − x̂‖2 ≤ 2δ
ε with probability at least 1− exp(−1

2(λn − w(Ω)−
√
nε)2), if n ≥ w(Ω)2+3/2

(1−ε)2 .

Note that in both cases, the convergence rates are exponential O(exp(−n)).
Proof This follows directly by using the property that for any Lipschitz function, with constant L,

P[f(g) ≥ E[f ]− t] ≥ 1− exp(− t2

2L2
). (11)

To see that the map Φ→ minz∈Ω ‖Φz‖2 is Lipschitz, observe,

min
z∈Ω
‖Φz‖2 −min

z′∈Ω
‖Φ′z′‖2 ≤ ‖Φz′‖2 − ‖Φ′z′‖2 (12)

≤ ‖(Φ− Φ′)‖F ‖z‖2 (13)

≤ ‖(Φ− Φ′)‖F . (14)

Thus, we have,

P[min
z∈Ω
‖Φz‖ ≥ ε] ≥ 1− exp(−1

2
(λn − w(Ω)−

√
nε)2), (15)

when λn − w(Ω)−
√
nε. Plugging in ε = 0, we get the first condition as well.
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Relationship to Radermacher complexity In the empirical risk minimization framework, the sample
complexity is almost entirely defined by the Radermacher complexity, which is analogous to the Gaussian
width, but with expectations taken over binary random variables instead of a Guassian.

3.3. Properties of Gaussian Widths

The main theorem shows that the sample complexity is pretty sharply bounded by the Gaussian width w(Ω).
The Gaussian width of a set is a very well behaved object with many useful properties. We will use these
properties in the applications section, but you should feel free to skip the details here for now.

3.3.1. Relationship to Intrinsic Volume

A large number of properties follow from the fact that w is a valuation, an analogue of a measure. To show this,
we’ll use a clever fact that an isotropic Gaussian vector can be separated into two independent parts, length
and direction. The direction component integrates over the unit sphere.

w(S) = Eg[sup
z∈S

gT z] (16)

= λp︸︷︷︸
length

∫
Sp−1

1

2
(max
z∈S

uT z −min
z∈S

uT z) du︸︷︷︸
direction

(17)

=
λp
2
b(S), (18)

where b(S) is the intrinsic volume of a set (a deterministic property). It turns out (and this is intuitive)
that du is a Haar measure, giving us the following properties for free.

• w(S) invariant to translations and unitary transformations.

• Scaling: If w(tK) ≤ tw(K), t > 0.

• Monotonic: If S1 ⊂ S2 ⊂ <p, w(S1) ≤ w(S2).

• If w(S1 ∪ S2) + w(S1 ∩ S2) = w(S1) + w(S2).

• w(S) = w(conv(S)) (because of the sup).

• If S = S1 ⊕ S2, w(S ∩ Sp−1) ≤ w(S1 ∩ Sp−1) + w(S2 ∩ Sp−1).

3.3.2. Other Properties

There are a couple of other cool properties that I won’t prove here

• If V is a vector space, w(V ∩ Sp−1) =
√

dim(V ).

• w(C ∩ Sp−1) ≤ Eg∼N (0,Ip)[dist(g, C∗)] if C is a non-empty convex cone in <p. The proof follows from

convex duality between supz∈C g
T z and dist(g, C∗).

• A simple corollary; w(C ∩ Sp−1) + w(C∗ ∩ Sp−1) ≤ p.
• Let N(S, ε) be the ε-covering number of S. Then, by Dudley’s inequality,

inf
ε
cε
√

log(N(S, ε)) ≤ w(S) ≤ 24

∫ ∞
0

√
log(N(S, ε))dε. (19)

4. Applications

We have covered some fairly complex results in this article. To summarize, we showed the convex optimization
problem exponentially converges after getting O(w(Ω)2) samples, where w(Ω) is the Gaussian width of the
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tangent cone of the atomic norm TA(x∗) at the unit sphere. The Gaussian width has several useful compositional
properties (just like the Radermacher complexity). To instantiate the framework, we just need to bound the
Gaussian width of the atomic set. In this section, we will do so for two examples, orthogonal matrices and low
rank matrices.

4.1. Orthogonal Matrices

Lemma 5 Let x∗ be an m × m orthogonal matrix. Then, letting A be the set of all orthogonal matrices,
w(TA(x∗) ∩ Sm2−1)2 ≤ 3m(m−1)

4 .

Let’s start by defining the atomic norm which should be 1 for all elements in A and ≤ 1 for everything in
the convex hull convA. Note that the set of orthogonal matrices is not convex. However, it is not hard to see
that every matrix in the convex hull of all m×m orthogonal matrices has singular values ≤ 1; let U and V be
two orthogonal matrices; V = AU , where A is also orthogonal. So,

‖θU + (1− θ)V ‖2 = ‖(θI + (1− θ)A)U‖2
≤ θ‖I‖2 + (1− θ)‖A‖2
≤ 1,

where ||U ||2 = σ1(U) is the spectral norm, the largest singular value. We have just shown that the atomic
norm is the spectral norm!

Using the property that w is rotationally invariant (Property 1 in Section 3.3.1), we just need to consider
the tangent cone at x∗ = I.

TA(I) = cone{M − I | ‖M‖A ≤ 1}.

Every matrix M can be represented as the sum of a symmetric (A = AT ) and skew-symmetric matrix
(A = −AT ), so we can partion TA(I) into these two spaces. The Lie algebra of skew-symmetric matrices is
the tangent space of the orthogonal group O(m), so we’ll have to consider full subspace. Using the symmetry
property, this subset is isomorphic to the

(
m
2

)
dimensional vector space that defines the entries above (or below)

the diagonal.
The remaining component lies in subspace of symmetric matrices,

S = cone{M − I : ‖M‖A ≤ 1,M symmetric} (20)

= cone{UDUT − I : ‖D‖A ≤ 1, D diagonal} (21)

= cone{U(D − I)UT : ‖D‖A ≤ 1, D diagonal} (22)

= −PSDm, (23)

where PSDm is the set of positive semi-definite m×m matrices. The positive semidefinte cone is self-dual
(i.e. the polar cone PSD∗m = PSDm) and hence contributes (Property 3 in Section (3.3.2)) 1

2

(
m+1

2

)
.

Putting this together, we have that w(Ω)2 ≤
(
m
2

)
+ 1

2

(
m+1

2

)
.

4.2. Low-Rank Matrices

Lemma 6 Let x∗ be a m1 ×m2 rank-r matrix (m1 ≤ m2). Then, letting A be the set of unit-norm rank-one
matrices, w(TA(x∗) ∩ Sm1m2−1)2 ≤ 3r(m1 +m2 − r).
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Once again, the set of rank-1 matrices is not convex; the sum of two rank-1 matrices is rarely going to stay
rank-1! The spectral norm, ||M ||∗ =

∑m
i=1 σi(M) (i.e. the sum of singular values) is a suitable atomic norm for

this set. Firstly, ‖ · ‖∗ is 1 for every element in A and is also ≤ 1 for every element in convA. While there may
be other choices for ‖ · ‖A, the spectral norm is a natural choice to minimize the size of the tangent cone, as
we’ll shortly see.

Let x∗ = UΣV T , where U ∈ <m1×r, Σ ∈ <r×r and V ∈ <m2×r. The tangent cone at x∗ is,

TA(x∗) = cone{M − x∗ | ‖M‖∗ ≤ tr Σ}.

To bound the width of this set, we are going to use Property 2 in Section (3.3.2), which lets us proceed by
bounding the distance to the normal cone. The normal cone is described by the sub-differentials at x∗,

NA(x∗) = cone{UV T +W : W TU = 0,WV = 0, ‖W‖∗A ≤ 1} (24)

= {tUV T +W : W TU = 0,WV = 0, ‖W‖∗A ≤ t}, (25)

where ||W ||∗A is the dual norm; in our case it’s just the operator norm ‖ · ‖2. Let ∆ be directions in the
subspaces of U and V and ∆⊥ be directions orthogonal to U and V .

For any matrix G, a point in normal cone is the projection, ||P∆⊥(G)||2UV T + P∆⊥(G). Finally,

w(Ω) ≤ EG∼N ((,0),I)[dist(G,NA(x∗))] (26)

≤ E[‖G− Z(G)‖2F ] (27)

= E[‖P∆(G) + P∆⊥(G)− ‖P∆⊥(G)‖2UV T − P∆⊥(G)‖2F ] (28)

≤ E[‖P∆(G)‖2F ] + E[‖P∆⊥(G)‖22]‖UV T ‖2F (29)

= E[‖P∆(G)‖2] + rE[‖P∆⊥(G)‖22]. (30)

The first term contributes r(m1 +m2− r) because the dimension of P∆ is r(m1 +m2− r). The second term
is calculated by observing that P∆⊥(G) is an isotropic Gaussian (m1 − r) × (m2 − r) matrix. We have good
concentration results on the singular values of such random matrices,

P[‖P∆⊥(G)‖2 ≥
√
m1 − r +

√
m2 − r + s] ≤ exp(−s2/2).

It’s not hard to show from here that E[||P∆⊥(G)||22] ≤ (
√
m1 − r +

√
m2 − r)2 + 2.

Putting this all together, we get our desired result;

w(Ω) ≤ r(m1 +m2 − r) + r((
√
m1 − r +

√
m2 − r)2 + 2)

≤ r(m1 +m2 − r) + 2r(m1 − r +m2 − 2r + 1)

≤ 3r(m1 +m2 − r).

5. Conclusions

I hope through this article I’ve made a case for atomic norms. The framework allows us to reduce the complexity
of a recovery problem for arbitrary atomic sets to a Gaussian width computation. Computing the Gaussian
widths can still be a hard problem (just like computing the Radermacher complexity), but they provide several
useful properties that make these calculations easier. From the few examples I have seen, the Gaussian width
calculation requires you to fairly mechanically decompose the tangent cone into spaces that are fairly easy to
describe.

7


	Motivation: Recovering under-determined objects using structure
	The Mixture of Linear Regressions

	The Structured Recovery Problem
	Convex Geometry Prelimnaries

	Recovering x*
	Gaussian widths and bounding minimum gain
	Main Theorem: Exponential Convergence to x*
	Properties of Gaussian Widths
	Relationship to Intrinsic Volume
	Other Properties


	Applications
	Orthogonal Matrices
	Low-Rank Matrices

	Conclusions

