Estimating Latent Variable Graphical Models with
Moments and Likelihoods

Arun Tejasvi Chaganty
Percy Liang

Stanford University

June 18, 2014

Chaganty, Liang (Stanford University) Moments and Likelihoods June 18, 2014

1/26



Introduction

Latent Variable Graphical Models
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Introduction

Parameter Estimation is Hard

—log-likelihood

parameters

» Log-likelihood function is non-convex.
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Introduction

Parameter Estimation is Hard

—log-likelihood

parameters

> Log-likelihood function is non-convex.

» MLE is consistent but intractable.

» Local methods (EM, gradient descent, ...) are tractable but
inconsistent.

» Method of moments estimators can be consistent and
computationally-efficient, but require more data.
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Introduction

Consistent estimation for general models

» Several estimators based on the method of moments.

> Phylogenetic trees: Mossel and Roch 2005.
Hidden Markov models: Hsu, Kakade, and Zhang 2009
Latent Dirichlet Allocation: Anandkumar et al. 2012
Latent trees: Anandkumar et al. 2011
PCFGs: Hsu, Kakade, and Liang 2012
Mixtures of linear regressors chagantyl3regression
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Consistent estimation for general models

» Several estimators based on the method of moments.

> Phylogenetic trees: Mossel and Roch 2005.
Hidden Markov models: Hsu, Kakade, and Zhang 2009
Latent Dirichlet Allocation: Anandkumar et al. 2012
Latent trees: Anandkumar et al. 2011
PCFGs: Hsu, Kakade, and Liang 2012
Mixtures of linear regressors chagantyl3regression
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>

» These estimators are applicable only to a specific type of model.

» In contrast, EM and gradient descent apply for almost any model.

» Note: some work in the observable operator framework does apply to
a more general model class.

Weighted automata: Balle and Mohri 2012.

Junction trees: Song, Xing, and Parikh 2011

>
>
>

v

TODO: Check that this list is representative
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Introduction

Consistent estimation for general models

» Several estimators based on the method of moments.

> Phylogenetic trees: Mossel and Roch 2005.
Hidden Markov models: Hsu, Kakade, and Zhang 2009
Latent Dirichlet Allocation: Anandkumar et al. 2012
Latent trees: Anandkumar et al. 2011
PCFGs: Hsu, Kakade, and Liang 2012
Mixtures of linear regressors chagantyl3regression

vV vy vy VvYYy

>

» These estimators are applicable only to a specific type of model.
» In contrast, EM and gradient descent apply for almost any model.
» Note: some work in the observable operator framework does apply to
a more general model class.
» Weighted automata: Balle and Mohri 2012.
» Junction trees: Song, Xing, and Parikh 2011

> L.
»  TODO: Check that this list is representative
» How can we apply the method of moments to estimate

parameters efficiently for a general model?
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Introduction

Setup

» Discrete models, d, k.
» Assume d > k.

» Parameters and marginals can
be put into a matrix or tensor
-i introduce notation.

» Assume infinite data.

» Highlight directed vs
undirected - we focus on
directed.
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Introduction

Background: Three-view Mixture Models

Definition (Bottleneck)

A hidden variable h is a bottleneck
if there exist three observed
variables (views) xi, x2, x3 that are
conditionally independent given h.

® e
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Introduction

Background: Three-view Mixture Models

Definition (Bottleneck)

A hidden variable h is a bottleneck
if there exist three observed
variables (views) xi, x2, x3 that are
conditionally independent given h.

» Anandkumar, Hsu, and Kakade
2012 provide an algorithm to @ @ @
estimate conditional moments

P(x; | h) based on tensor
eigendecomposition.

> In general, three views are
necessary for identifiability
(Kruskal 1977).
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Introduction

Outline

TODO: Make outline a diagram

Introduction
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Introduction

Example: a bridge, take |

» Each edge has a set of
parameters.
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Introduction

Example: a bridge, take |

v

Each edge has a set of
parameters.

v

hi and hy are bottlenecks.
» We can learn

]P)(Xf‘hl)? ]P)(X1b|h1)7 .
» However, we can't learn
]P)(h2|h1) this way.
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Introduction

Example: a bridge, take Il

P> Observe the joint distribution, TODO: Use
cartoon matrices

POt ) = > PO | ) PO | ho) Phy, ho).
My hih2 p(1]1) 0(2]2) Zi»
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P> Observe the joint distribution, TODO: Use
cartoon matrices

POt ) = > PO | ) PO | ho) Phy, ho).
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> Observed moments P(x?, x?) are linear
in the hidden marginals P(h1, hy).

My = oY) 7z, 0IDT
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Introduction

Example: a bridge, take Il

P> Observe the joint distribution, TODO: Use
cartoon matrices

POt ) = > PO | ) PO | ho) Phy, ho).
My hih2 p(1]1) 0(2]2) Zi»

> Observed moments P(x?, x?) are linear
in the hidden marginals P(h1, hy).

My = oY) 7z, 0IDT

» Solve for P(h1, hy) using
pseudoinversion.

Z1p = O pg, 0RIDTT
» P(hy | h1) can be recovered by

normalization.
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Introduction

Outline

TODO: Make outline a diagram

Introduction
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Estimating Hidden Marginals

Exclusive Views

Definition (Exclusive views)

We say h; € § C h has an
exclusive view x, if

1. There exists some observed
variable x, which is
conditionally independent of
the others S\{h;} given h;.

2. The conditional moment
matrix OVl & P(x, | h;) has
full column rank k and can be
recovered.

3. TODO: Exclusive views for a clique
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Estimating Hidden Marginals

Exclusive views give parameters

» Given exclusive views, P(x | h),
learning cliques is solving a
linear equation! Topo: Use cartoon

tensors

P(x1,...,xm) = E P(x1|h1)---
—_———
Y h1,ee. him *o(lll)
P(hy,- -, hm) (=)

—_———
Z
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Estimating Hidden Marginals

Exclusive views give parameters

» Given exclusive views, P(x | h),
learning cliques is solving a
linear equation! Topo: Use cartoon

]P)(Xl""7xm): Z P(Xl‘hl)
M’ hi,...,hm
o)
P(h17"'7hm) @
N———
V4

M=z ... olmim)
7 — M(o(lll)T, e o(mlm)T)‘
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Estimating Hidden Marginals

Bottlenecked graphs

» When are we assured exclusive
views?
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Estimating Hidden Marginals

Bottlenecked graphs

» When are we assured exclusive
views?

Definition (Bottlenecked set)

A set of hidden variables S is said
to be bottlenecked if each h€ S is
a bottleneck.
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Estimating Hidden Marginals

Bottlenecked graphs

» When are we assured exclusive
views?

Definition (Bottlenecked set)

A set of hidden variables S is said
to be bottlenecked if each h€ S is
a bottleneck.

» Theorem: A bottlenecked
clique has exclusive views.

TODO: Say show in paper.
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Estimating Hidden Marginals

Outline

TODO: Make outline a diagram

Estimating Hidden Marginals
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Estimating Hidden Marginals

More Bottlenecked Examples

Hidden Markov models Latent Tree models

(%) @ ()
® ® ONORO
eww
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Estimating Hidden Marginals

More Bottlenecked Examples
Halpern and Sontag 2013

Hidden Markov models Latent Tree models

$e8 giv

Noisy Or (non-example)

() L)
TE 6 0
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Combining moments with likelihood estimators

Outline

TODO: Make outline a diagram

Combining moments with likelihood estimators
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Combining moments with likelihood estimators

Convex marginal likelihoods

» The MLE is statistically most @ e @ 9

efficient, but usually
non-convex.

log P(x) = log Y P(x1|h1) P(xz|h2)P(h1, h2)
h1,h2
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Combining moments with likelihood estimators

Convex marginal likelihoods

» The MLE is statistically most @ e @ 9

efficient, but usually
non-convex.

» If we fix the conditional
moments, — logP(x) is convex logP(x) =log Y P(x1|h) P(x2|h)P(h1, ho)
%/—/
in 9 h1,ha known

— Composite Likelihood
-~ Pseudoinverse Objective
0.0
© 008
2
ht
30
<}
O o4
0.02
to 02 & 0% 08 To
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Combining moments with likelihood estimators

Convex marginal likelihoods

» The MLE is statistically most @ 9
efficient, but usually @

non-convex.

» If we fix the conditional
moments, — log P(x) is convex logP(x) =log Y P(x1|h)P(xz|h2)P(hy, h)
—_—

in 9 hy,he known
» No closed form solution, but a " o |
- - Pseudoinverse Objective

local method like EM is
guaranteed to converge to the
global optimum.

Objective

0.04

0.02
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Combining moments with likelihood estimators

Composite likelihoods

» In general, the full likelihood is G @ @_’

still non-convex. Topo: Specify which

. ® ® ®

log P(x) =log > P(x1| h)P(xz | h2)P(x3 | h3)
h1,h2,h3

known

P(h3 | hy)P(hy, h2)
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Combining moments with likelihood estimators

Composite likelihoods

» In general, the full likelihood is
still non-convex. Topo: Specify which

X

» Consider composite likelihood
on a subset of observed log P(x) =log " P(x1 | m)P(xa | ha)P(xs | hs)
variables. hu,ha,hs -
P(h3 | hy)P(hy, h2)
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Combining moments with likelihood estimators

Composite likelihoods

» In general, the full likelihood is
still non-convex. Topo: Specify which

X

» Consider composite likelihood

on .a subset of observed log P(x) = log 3" P(x1 | h) P(x2 | ho)
variables. N
P(h1, ho)
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Combining moments with likelihood estimators

Composite likelihoods

» In general, the full likelihood is
still non-convex. Topo: Specify which

X

» Consider composite likelihood

on .a subset of observed log P(x) = log 3" P(x1 | h) P(x2 | ho)
variables. by

known

» Can be shown that estimation P(hy, ho)
with composite likelihoods is 10!
consistent (Lindsay 1988).

» Asymptotically, the composite
likelihood estimator is more
efficient.

10°

16— 6l

107!

4 Pseudoinverse
4 Composite likelihood

10

,1 i
10" 107 102 10 10t 107
€
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Recovering parameters

Outline

TODO: Make outline a diagram

Recovering parameters
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Recovering parameters

Recovering parameters in directed models

» Conditional probability tables
are the default
parameterization for a directed AL

model. G 1 @
» Can be recovered by 9 9
normalization: e @
P(h1, hp)

Blha [ 1) = = B(hy, ha)’
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Recovering parameters

Recovering parameters in undirected log-linear models

» Assume a log-linear parameterization,
TODO: use sum over cliques - talk through.

po(x,h) = exp (07 ¢(x,h) — A(0)) .
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Recovering parameters

Recovering parameters in undirected log-linear models

» Assume a log-linear parameterization,
TODO: use sum over cliques - talk through.

po(x,h) = exp (07 ¢(x,h) — A(0)) .

» The unsupervised negative
log-likelihood is non-convex,

Lunsup(0) 2 Exp[—log » _ po(x,h)]- (n) (n)

heH
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Recovering parameters

Recovering parameters in undirected log-linear models

» Assume a log-linear parameterization,
TODO: use sum over cliques - talk through.

po(x,h) = exp (07 ¢(x,h) — A(0)) .

» The unsupervised negative
log-likelihood is non-convex,

Lunsup(a) é EXN'D[_ |Og Z pg(X, h)] G 0 e
heH e e 9 e

» However, the supervised negative
log-likelihood is convex,

Esup(e) £ IE(x,h)stup [_ IOg P9(X’ h)]

6" ZE(x,h)wsupM(XC,hc)] + A(9).

ceg
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Recovering parameters

Recovering parameters in undirected log-linear models

» Recall, the marginals can typically
estimated from supervised data.

Esup(a) =-0" (Z E(x,h)NDsup[¢(XC» hC)]) + A(@).

ceg
e (n)——)

Chaganty, Liang (Stanford University) Moments and Likelihoods June 18, 2014

23 / 26



Recovering parameters

Recovering parameters in undirected log-linear models

» Recall, the marginals can typically
estimated from supervised data.

Lap(0) = =07 | Y Eemyany, [0(xe,he)l | + A0).
ceg 0

e (ry——()
» However, the marginals can also be 9 e 9 @

consistently estimated by moments!

e =Y Plxc|hc) Phe)  élxc,he).

x¢;he cond. moments hidden marginals
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Recovering parameters

Optimizing pseudolikelihood

> Estimating marginals uc is independent
of treewidth, but computing the
normalization constant is: TODO: convex
but not easy

A(9) £ IogZexp (€T¢(x, h)) .

x,h
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Recovering parameters

Optimizing pseudolikelihood

> Estimating marginals uc is independent
of treewidth, but computing the
normalization constant is: TODO: convex
but not easy

A(0) élogZexp 0 o(x h))

» We can use pseudolikelihood
(besag75pseudo) to consistently
estimate distributions over local
neighborhoods.

Apseuco(0 N'(a)) 2 log Y~ exp (67 ¢(xxr, b)) -
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Recovering parameters

Optimizing pseudolikelihood

> Estimating marginals uc is independent
of treewidth, but computing the
normalization constant is: TODO: convex
but not easy

A(0) élogZexp 0 o(x h))

» We can use pseudolikelihood
(besag75pseudo) to consistently
estimate distributions over local
neighborhoods.

Apseuco(0 N'(a)) 2 log Y~ exp (67 ¢(xxr, b)) -

> Clique marginals not sufficient statistics,
but we can still estimate them.
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Conclusions

Conclusions

P> TODO: Use outline slide.

P> TODO: Show the venn diagram on progress on

generality..

» An algorithm for any
(non-degenerate)
bottlenecked discrete
graphical models.
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» Efficiently learns models with
high-treewidth.
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Conclusions

Conclusions

P> TODO: Use outline slide.

P> TODO: Show the venn diagram on progress on

generality..
» An algorithm for any @
(non-degenerate) G @

bottlenecked discrete
graphical models. G

» Efficiently learns models with @ @
high-treewidth. @

» Combine moment estimators e
with composite likelihood
estimators.
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Conclusions

Conclusions

P> TODO: Use outline slide.

P> TODO: Show the venn diagram on progress on

generality..
» An algorithm for any @
(non-degenerate) G @

bottlenecked discrete
graphical models. @

» Efficiently learns models with @ @
high-treewidth. @

» Combine moment estimators e
with composite likelihood

estimators.
» Extends to log-linear models.

> Allows for easy

regularization, missing data
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Conclusions

Thank you!
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