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Motivation: estimate mixture models

I Mixture models are important in ML with many applications

I We have no general and tractable methods for parameter estimation in mixture models

. EM is generally applicable, but prone to local optima

. method of moments can sometimes provide global guarantees, but difficult to use

I We want to generalize the class of mixture models solvable by the method of moments.

Method Model Result
maximum-likelihood any intractable for most mixture models
expectation-maximization latent variables convergence to local min.
solving moment equations case by case moment matching
tensor factorization tensor structured models moment matching
polymom (this work) polynomial structure moment matching

Contributions: more general. unifying, and turnkey

I More general: we can estimate any mixture model with polynomial moments
. More general than tensor structured models
. Includes mixtures of Gaussians, Poissons, and linear regressions. Also multiview mixtures.

I Unifying: the same algorithm can be used in both Pearson’s mixture of 2 Gaussians (need
high order moments) in 1D and high dimensional mixtures (low order moments).

I Naturally supports parameter sharing, like EM

I Turnkey: the user just needs to provide coefficients of some polynomials

I Connecting estimating mixture models to polynomial optimization and computer algebra

Problem setup: the model class we want to mix (user specified)

I p(x; θ) is a distribution parameterized by θ.

I Moments Ex∼p(x;θ)[φ(x)] of p(x; θ) can be expressed in terms of parameters θ.

. For example φ(x) = x1, or x2
1x3, log(x1), sin(x1)

I The scope of this work is when these moments are polynomials

f (θ) , Ex∼p(x;θ)[φ(x)] =
∑

α

aαθ
α, where θα =

P∏

p=1

θαp
p . (1)

I The choice of φ(x) and the coefficients of f (θ) are both model dependent and user
specified. Choosing a suitable set of φ(x) and findings the corresponding coefficients is
what Polymom needs as inputs.

Example

For the Gaussian distribution in 1d with mean ξ and varaince σ2. The observation functions
φ(x) = [x1, . . . , x6, x7] corresponds to polynomials f (θ) = [ξ, ξ2 + σ2, ξ3 + 3ξσ2, . . . ].
Note that this is for a single component to be mixed.

Problem setup: the mixture model

Given the component model p(x; θ), we can defined the corresponding mixture model,
where each data point x ∈ RD is associated with a latent component z ∈ [K ]:

z ∼ Multinomial(π), x | z ∼ p(x; θz), (2)

where π = (π1, . . . , πK) are the mixing coefficients, θ∗k ∈ RP are the true model
parameters for the kth mixture component, and x ∈ RD is the data.

From a component to its mixture

For each component, we have polynomials expressions for observation functions φ(x).

f (θ) , Ex∼p(x;θ)[φ(x)] =
∑

α

aαθ
α (3)

The moments for the entire mixture is

E[φ(x)] =
K∑

k=1

πkE[φ(x)|z = k] =
K∑

k=1

πk f (θk). (4)

I Solving this system of polynomial equations is the task of parameter estimation using
method of moments.

I Unfortunately, pairtially due to its symmetries (K ! solutions), this is a hard polynomial
system to solve even when it is easy to solve the single component case.
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1. Write down a mixture model
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3. Add data
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minimize
y

tr(Mr(y))

s.t. Mr(y) ⌫ 0, y0,0 = 1
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4. Recover parameter moments (y)

Mr(y) = VPV>

# sim. diag.

P = diag([⇡1, ⇡2])

V =

2
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5. Solve for parameters

Conceptual idea: get rid of symmetries by working with moments of parameters

The key idea of Polymom is to exploit the mixture structure of the moment equations (4). Specifically, let µ∗ be a particular
“mixture” over the component parameters θ∗1, . . . , θ

∗
k (i.e. µ∗ is a probability measure). Then we can express the moment

conditions (4) in terms of µ∗

E[φn(x)] =

∫
fn(θ) µ∗(dθ), where µ∗(θ) =

K∑

k=1

πkδ(θ − θ∗k). (5)

The following feasibility problem is equivalent to the moment conditions in (4):

find µ ∈M+(RP), the set of probability measures over RP

s.t.
∫
fn(θ) µ(dθ) = E[φn(x)], n = 1, . . . ,N

µ is K -atomic (i.e. sum of K deltas),
(6)

where we deliberately “forget” the permutation of the components by using µ to represent the problem instead of [θ1, . . . , θK ].

Moment Completion: making things tractable

The Generalized Moment Problem framework allows us to work with measures by working with their moments using
semidefinite programming. Let Ly(θα) , yα, and we will work with the moment sequence y = (yα)α∈NP . Note that these
moments y are moments in the parameter space (like yα = Eµ[θα]), and not of the data as before (like Ep(x;θ∗)[φn(x)]).

find y ∈ RN (or equivalently, find M(y))
s.t.

∑
α anαyα = E[φn(x)], n = 1, . . . ,N

Mr(y) � 0, y0 = 1
rank(Mr(y)) = K and rank(Mr−1(y)) = K .

(7)

Unfortunately, we still cannot deal with rank constraints, but the following relaxation (a semidefinite program) is tractable:

minimize
y

tr(CMr(y))

s.t.
∑
α anαyα = E[φn(x)], n = 1, . . . ,N

Mr(y) � 0, y0 = 1

(8)

I For some models like multiview mixture and mixture of linear regressions, the linear constraints might fully determines y and we
do not need to solve an SDP. In such cases, Polymom provides an unifying view and some guarantees.

I After obtaining y, there are several generic ways to extract θ based on solving some kind of eigenvalue problem.

Experimental results

Methd. EM TF Poly EM TF Poly EM TF Poly
Gaussians K ,D T = 103 T = 104 T = 105

spherical 2, 2 0.37 2.05 0.58 0.24 0.73 0.29 0.19 0.36 0.14
diagonal 2, 2 0.44 2.15 0.48 0.48 4.03 0.40 0.38 2.46 0.35
constrained 2, 2 0.49 7.52 0.38 0.47 2.56 0.30 0.34 3.02 0.29

Others K ,D T = 104 T = 105 T = 106

3-view 3, 3 0.38 0.51 0.57 0.31 0.33 0.26 0.36 0.16 0.12
lin. reg. 2, 2 - - 3.51 - - 2.60 - - 2.52

Table : T is the number of samples. Methods: EM: sklearn initialized with k-means using 5 random restarts; TF: tensor power method implemented in
Python; Poly: Polymom by solving Problem 8. Models: for mixture of Gaussians, we have σ ≈ 2||µ1 − µ2||2; ‘spherical’ and ‘diagonal’ describes the
type of covariance matrix. The mean parameters of constrained Gaussians satisfies µ1 + µ2 = 1. The best result is bolded. TF only handles spherical
variance, but it was of interest to see what TF does if the data is drawn from mixture of Gaussians with diagonal covariance, these results are in strikeout.

Examples: what the user needs to provide Polymom

Table : Applications of the Polymom framework.

Mixture of linear regressions

Model Observation functions

x = [x, υ] is observed where x ∈ RD is drawn from an

unspecified distribution and υ ∼ N (w · x, σ2I ), and σ2 is

known. The parameters are θ∗k = (wk) ∈ RD .

φα,b(x) = xαυb for 0 ≤ |α| ≤ 3, b ∈ [2].

Moment polynomials
fα,1(θ) =

∑P
p=1 E[xα+γp]wp

fα,2(θ) = E[xα]σ2 +
∑P

p,q=1 E[xαxpxq]wpwq, where the

γp ∈ NP is 1 in position p and 0 elsewhere.

Mixture of Gaussians

Model Observation functions

x ∈ RD is observed where x is drawn from a Gaussian

with diagonal covariance: x ∼ N (ξ, diag(c)). The

parameters are θ∗k = (ξk , ck) ∈ RD+D .

φα(x) = xα for 0 ≤ |α| ≤ 4.

Moment polynomials
fα(θ) =

∏D
d=1 hαd

(ξd , cd).

Multiview mixtures

Model Observation functions
With 3 views, x = [x(1), x(2), x(3)] is observed where

x(1), x(2), x(3) ∈ RD and x(`) is drawn from an unspecified

distribution with mean ξ(`) for ` ∈ [3]. The parameters

are θ∗k = (ξ
(1)
k , ξ

(2)
k , ξ

(3)
k ) ∈ RD+D+D .

φijk(x) = x
(1)
i x

(2)
j x

(3)
k where 1 ≤ i , j, k ≤ D.

Moment polynomials
fijk(θ) = ξ

(1)
i ξ

(2)
j ξ

(3)
k .

Discussions, future work, and limitations

I Compared to previous literature on this topic, we do not need a 1-to-1 correspondence
between the data dimensions and the parameter dimensions. The structure of the model
class is encoded in these polynomials that can be derived systematically.

I Constraints on parameters like ξ1 = ξ2, or ξ2
1 ≥ 3σ2 translates to tractable linear or

semidefinite constraints.

I More statistically efficient formulations? For example, the generalized method of moments
allows us to model variances in data moments using a weighting matrix W:

minimize
g,y

gTWg

s.t. gn =
∑
α anαyα − E[φn(x)], n = 1, . . . ,N

M(y) � 0

(9)

Limitations and wishlist

I Price for generality: Polymom only gives us moment matching solutions, we do not have
formal guarantees on consistent parameter estimations except for specific models

I Solving big SDPs is still an issue: fragile and scales badly

I Does this optimization viewpoint give us insight on identifiability?

I More than just the mixture structure?

We hope that the Polymom point of view can be a step towards making method of
moments more systematic, and more statistically efficient.

Software

https://github.com/sidaw/polymom

https://github.com/sidaw/mompy: a Generalized Moment Problem package

Mixture of 2 Gaussians and constraints
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NLP at Stanford University http://bit.ly/codalab-polymom {sidaw,chaganty,pliang}@cs.stanford.edu


