Motivation: estimate mixture models

mation in mixture models
$\square \mathrm{EM}$ is generally applicable, but prone to local optima

\triangleright method of moments can sometimes provide global guarantees, but difficult to use - We want to generalize the class of mixture models solvable by the method of moments. Method Model | maximum-likelihood | any | instractable for most mixture models |
| :--- | :--- | :--- |
| convergence to local | | | expectation-maximization latent variables convergence to local min. solving moment equations case by case convergence to local

moment matching modes moment matching polymom (this work) polynomial structure moment matching

Contributions: more general. unifying, and turnkey

- More general: we can estimate any mixture model with polynomial moments
\triangleright More general than tensor structured models
\triangleright Includes mixtures of Gaussians, Poissons, and linear regressions. Also multiview mixture - Unifying: the same algorithm can be used in both Pearson's mixture of 2 Gaussians (nee high order moments) in 1D and high dimensional mixtures (low order moments).
Naturally supports parameter sharing, like EM
- Turnkey: the user just needs to provide coefficients of some polynomials - Connecting estimating mixture models to polynomial optimization and computer algebra Problem setup: the model class we want to mix (user specified)
$p(\mathrm{x} ; \theta)$ is a distribution parameterized by θ
- Moments $\mathbb{E}_{\mathrm{x} \sim p(\mathrm{x} ; \theta]}[\phi(\mathrm{x})]$ of $p(\mathrm{x} ; \theta)$ can be expressed in terms of parameters θ
\triangleright For example $\phi(\mathrm{x})=x_{1}$, or $x_{1}^{2} x_{3}, \log \left(x_{1}\right), \sin \left(x_{1}\right)$
- The scope of this work is when these moments are polynomials

$$
f(\theta) \triangleq \mathbb{E}_{x \sim p(x ; \theta)}[\phi(\mathrm{x})]=\sum_{\alpha} a_{\alpha} \theta^{\alpha}, \text { where } \theta^{\alpha}=\prod_{\rho=1}^{p} \theta_{\rho}^{\alpha_{\rho}} .
$$

The choice of $\phi(\mathbf{x})$ and the coefficients of $f(\theta)$ are both model dependent and user specified. Choosing a suitable set of $\phi(\mathrm{x})$ and findings the corresponding coefficients is what Polymom needs as inputs.

Example

For the Gaussian distribution in 1 d with mean ξ and varaince σ^{2}. The observation functions $\phi(x)=\left[x^{1}, \ldots, x^{6}, x^{7}\right]$ corresponds to polynomials
Note that this is for a single component to be mixed.

Problem setup: the mixture model
Given the component model $p(x ; \theta)$, we can defined the corresponding mixture moder
where each data point $\mathbf{x} \in \mathbb{R}^{D}$ is associated with a latent component $z \in[K]$
$z \sim \operatorname{Multinomial}(\pi), \quad x \mid z \sim p\left(x ; \theta_{z}\right)$,
where $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$ are the mixing coefficients, $\theta_{k}^{*} \in \mathbb{R}^{P}$ are the true model where $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$ are the mixing coefficients, $\theta_{k} \in \mathbb{R}^{\prime}$ are
parameters for the $k^{\text {th }}$ mixture component, and $\mathbf{x \in \mathbb { R } ^ { D }}$ is the data.

From a component to its mixture

For each component, we have polynomials expressions for observation functions $\phi(\mathrm{x})$

$$
f(\theta) \triangleq \mathbb{E}_{x \sim p(x ; \theta)}[\phi(\mathrm{x})]=\sum_{\alpha} a_{\alpha} \theta^{\alpha}
$$

The moments for the entire mixture is

$$
\mathbb{E}[\phi(x)]=\sum_{k=1}^{K} \pi_{k} \mathbb{E}[\phi(x) \mid z=k]=\sum_{k=1}^{K} \pi_{k} f\left(\theta_{k}\right) .
$$

Solving this system of polynomial equations is the task of parameter estimation using

- Unfortunately, pairtially due to its symmetries ($K!$ solutions), this is a hard polynomial system to solve even when it is easy to solve the single component case.

Conceptual idea: get rid of symmetries by working with moments of parameters
The key idea of Polymom is to exploit the mixture structure of the moment equations (4). Specifically, let μ^{*} be a particular "mixture" over the component parameters $\theta_{1}^{*}, \ldots, \theta_{k}^{*}$ (i.e. μ^{*} is a probability measure). Then we can express the moment "mixture" over the component
conditions (4) in terms of μ^{*}

$$
\mathbb{E}\left[\phi_{n}(\mathrm{x})\right]=\int f_{n}(\theta) \mu^{*}(d \theta), \text { where } \mu^{*}(\theta)=\sum_{k=1}^{K} \pi_{k} \delta\left(\theta-\theta_{k}^{*}\right) .
$$

The following feasibility problem is equivalent to the moment conditions in (4):
find $\mu \in \mathcal{M}_{+}\left(\mathbb{R}^{P}\right)$, the set of probability measures over \mathbb{R}^{P}
s.t. $\int f_{n}(\theta) \mu(d \theta)=\mathbb{E}\left[\phi_{n}(x)\right]$
s.t. $\int f_{n}(\theta) \mu(d \theta)=\mathbb{E}\left[\phi_{n}(\mathrm{x})\right], \quad n=1, \ldots, N$
μ is K-atomic (i.e. sum of K deltas),
where we deliberately "forget" the permutation of the components by using μ to represent the problem instead of $\left[\theta_{1}\right.$,

Moment Completion: making things tractable

The Generalized Moment Problem framework allows us to work with measures by working with their moments using
semidefinite programming. Let $\mathscr{L}_{y}\left(\theta^{\alpha}\right) \triangleq y_{\alpha}$, and we will work with the moment sequence $y=\left(y_{\alpha}\right)_{\alpha \in \mathbb{N}^{p}}$. Note that these moments y are moments in the parameter space (like $y_{\alpha}=\mathbb{E}_{\mu}\left[\theta^{\alpha}\right]$), and not of the data as before (like $\mathbb{E}_{\rho\left(\mathrm{x}: \theta^{*}\right)}\left[\phi_{n}(\mathrm{x})\right]$).

$$
\begin{aligned}
& \text { find } \mathbf{y \in \mathbb { R } ^ { \mathbb { N } } \quad \text { (or equivalently, find } \mathbf { M } (\mathrm { y }))} \\
& \text { s.t. } \sum_{\alpha} a_{n \alpha y_{\alpha}}=\mathbb{E}\left[\phi_{n}(\mathrm{x})\right], \quad n=1, \ldots, N
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathcal{N r}_{r}(\mathrm{y}) \geq \mathcal{O}_{(\mathrm{y}} \mathrm{M}_{r}(\mathrm{y})\right)=K \text { and } \operatorname{rank}\left(\mathrm{M}_{r-1}(\mathrm{y})\right)=K .
\end{aligned}
$$

Unfortunately, we still cannot deal with rank constraints, but the following relaxation (a semidefinite program) is tractable: $\underset{y}{\operatorname{minimize}} \operatorname{tr}\left(\mathrm{CM}_{r}(\mathrm{y})\right)$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{\alpha} a_{n \alpha} y_{\alpha}=\mathbb{E}\left[\phi_{n}(x)\right], \quad n=1, \ldots, N \\
& \mathbf{M}_{r}(\mathrm{y}) \succeq 0, y_{0}=1
\end{array}
$$

- For some models like multiview mixture and mixture of linear regressions, the linear constraints might fully determines \mathbf{y} and we
do not need to solve an SDP. In such cases, Polymom provides an unifying view and some guarantees.
- After obtaining \mathbf{y}, there are several generic ways to extract θ based on solving some kind of eigenvalue problem.

Experimental results

	Methd.	EM	TF	Poly	EM	TF	Poly		TF	Poly
Gaussians	K, D	$T=10^{3}$			$T=10^{4}$			$T=10^{5}$		
spherical	2,2	0.37	2.05	0.58	0.24	0.73	0.29	0.19	0.36	0.14
diagonal	2,2	0.44	2.15	0.48	0.48	4.03	0.40	0.38	2.4	0.35
constrained	2,2	0.49	7.52	0.38	0.47	2.56	0.30	0.34	3.02	0.29
Others	K, D	$T=10^{4}$			$T=10^{5}$			$T=10^{6}$		
3 -view	3,3	0.38	0.51	0.57	0.31	0.33	0.26	0.36	0.16	0.12
eg.	2, 2			3.51			2.60			2.5

