Tensor Factorization via Matrix Factorization

Volodymyr Kuleshov* Arun Tejasvi Chaganty* Percy Liang

Stanford University

May 8, 2015

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 1 / 27

- 34

イロト イボト イヨト イヨト

What is tensor (CP) factorization?

(Kolda and Bader 2009)

Tensor analogue of matrix eigen-decomposition.

$$M=\sum_{i=1}^k \pi_i u_i\otimes u_i$$

Kuleshov, Chaganty, Liang (Stanford University)

May 8, 2015 2 / 27

What is tensor (CP) factorization?

(Kolda and Bader 2009)

Tensor analogue of matrix eigen-decomposition.

$$T=\sum_{i=1}^k\pi_iu_i\otimes u_i\otimes u_i$$

Kuleshov, Chaganty, Liang (Stanford University)

May 8, 2015 2 / 27

Image: A match a ma

What is tensor (CP) factorization?

(Kolda and Bader 2009)

Tensor analogue of matrix eigen-decomposition.

$$\widehat{T} = \sum_{i=1}^{k} \pi_i u_i \otimes u_i \otimes u_i + \epsilon \mathbf{R}.$$

Goal: Given T with noise, ϵR , recover factors u_i .

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 2 / 27

What is tensor (CP) factorization?

(Kolda and Bader 2009)

Tensor analogue of matrix eigen-decomposition.

$$\widehat{T} = \sum_{i=1}^k \pi_i u_i \otimes u_i \otimes u_i + \epsilon R.$$

Goal: Given T with noise, ϵR , recover factors u_i .

Why tensor factorization?

► To solve multi-linear algebra problems.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 3 / 27

Why tensor factorization?

- ► To solve multi-linear algebra problems.
- Parsing
 - Cohen, Satta, and Collins 2013

Why tensor factorization?

- ► To solve multi-linear algebra problems.
- Parsing
 - Cohen, Satta, and Collins 2013
- Knowledge base completion
 - Chang et al. 2014
 - Singh, Rocktäschel, and Riedel 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Why tensor factorization?

- ► To solve multi-linear algebra problems.
- Parsing
 - Cohen, Satta, and Collins 2013
- Knowledge base completion
 - Chang et al. 2014
 - Singh, Rocktäschel, and Riedel 2015

Topic modelling

Anandkumar et al. 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Why tensor factorization?

- ► To solve multi-linear algebra problems.
- Parsing
 - Cohen, Satta, and Collins 2013
- Knowledge base completion
 - Chang et al. 2014
 - Singh, Rocktäschel, and Riedel 2015

Topic modelling

- Anandkumar et al. 2012
- Community detection
 - Anandkumar et al. 2013a

< □ > < □ > < □ > < □ > < □ > < □ >

Why tensor factorization?

- To solve multi-linear algebra problems.
- Parsing
 - Cohen, Satta, and Collins 2013
- Knowledge base completion
 - Chang et al. 2014
 - Singh, Rocktäschel, and Riedel 2015
- Topic modelling
 - Anandkumar et al. 2012
- Community detection
 - Anandkumar et al. 2013a
- Learning latent variable graphical models
 - Anandkumar et al. 2013b
 - TODO: crowdsourcing
 - TODO: others

Kuleshov, Chaganty, Liang (Stanford University)

イロト 不得下 イヨト イヨト 二日

Existing tensor factorization algorithms

• Tensor power method (Anandkumar et al. 2013b)

- Analog of matrix power method.
- Sensitive to noise.
- Restricted to orthogonal tensors.

Kuleshov, Chaganty, Liang (Stanford University)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Existing tensor factorization algorithms

Tensor power method (Anandkumar et al. 2013b)

- Analog of matrix power method.
- Sensitive to noise.
- Restricted to orthogonal tensors.
- Alternating least squares (Comon, Luciani, and Almeida 2009; Anandkumar, Ge, and Janzamin 2014)
 - Sensitive to initialization.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 4 / 27

イロト 不得 トイヨト イヨト 二日

Existing tensor factorization algorithms

• Tensor power method (Anandkumar et al. 2013b)

- Analog of matrix power method.
- Sensitive to noise.
- Restricted to orthogonal tensors.
- Alternating least squares (Comon, Luciani, and Almeida 2009; Anandkumar, Ge, and Janzamin 2014)
 - Sensitive to initialization.
- Both operate on the tensor directly.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 4 / 27

イロト 不得下 イヨト イヨト 二日

Our approach

• Objective: a fast robust algorithm.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

≣ ▶ ४ ≣ ▶ ≣ ∽ ९ (~ May 8, 2015 5 / 27

A D N A B N A B N A B N

Our approach

- **Objective:** a fast robust algorithm.
- Approach: use existing fast and robust matrix algorithms.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 5 / 27

Outline

Tensor factorization

Tensor factorization via matrix factorization Single matrix factorizations Simultaneous matrix factorizations Oracle projections Bandom projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 6 / 27

イロト 不得 トイヨト イヨト 二日

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 7 / 27

3

A D N A B N A B N A B N

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 8 / 27

(日) (四) (日) (日) (日)

Proposal: Eigen-decomposition on the projected matrix.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 8 / 27

イロト イポト イヨト イヨト

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 9 / 27

3

A D N A B N A B N A B N

If two eigenvalues are equal, corresponding eigenvectors are arbitrary.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 9 / 27

If two eigenvalues are equal, corresponding eigenvectors are arbitrary.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 9 / 27

- If two eigenvalues are equal, corresponding eigenvectors are arbitrary.
- **Problem**: Eigendecomposition is very sensitive to the **eigengap**.

error in factors
$$\propto \frac{1}{\min(\text{difference in eigenvalues})}$$
.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 9 / 27

Projections matter

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 10 / 27

3

A D N A B N A B N A B N

Projections matter

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 10 / 27

3

A D N A B N A B N A B N

Projections matter

How can we leverage multiple projections?

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 10 / 27

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Tensor factorization

Tensor factorization via matrix factorization Single matrix factorizations Simultaneous matrix factorizations Oracle projections

Random projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 11 / 27

- 20

イロト 不得 トイヨト イヨト

Enter simultaneous diagonalization

イロト イポト イヨト イヨト

Enter simultaneous diagonalization

Enter simultaneous diagonalization

Projections share factors.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 12 / 27

Algorithm

► Algorithm: Simultaneously diagonalize projected matrices.

$$\widehat{U} = \arg \max_{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}(U^{\top} M_{l} U) \qquad \operatorname{off}(A) = \sum_{i \neq j} A_{ij}^{2}.$$

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 13 / 27

- 2

イロト イボト イヨト イヨト

Algorithm

► Algorithm: Simultaneously diagonalize projected matrices.

$$\widehat{U} = \arg \max_{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}(U^{\top} M_{l} U) \qquad \operatorname{off}(A) = \sum_{i \neq j} A_{ij}^{2}.$$

Optimize using the Jacobi angles (Cardoso and Souloumiac 1996).

Kuleshov, Chaganty, Liang (Stanford University)

A D N A B N A B N A B N

Algorithm

Algorithm: Simultaneously diagonalize projected matrices.

$$\widehat{U} = \arg \max_{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}(U^{\top} M_{l} U) \qquad \operatorname{off}(A) = \sum_{i \neq j} A_{ij}^{2}.$$

- Optimize using the Jacobi angles (Cardoso and Souloumiac 1996).
- Multiple projections proposed in Anandkumar, Hsu, and Kakade 2012, but didn't use simultaneous diagonalization.

Kuleshov, Chaganty, Liang (Stanford University)

Comparison with single matrix factorization

Single matrix factorization depends on minimum eigengap.

error in factors $\propto \frac{1}{\min_{i,j} \text{ difference in eigenvalues}}$.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 14 / 27

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のQ@

Comparison with single matrix factorization

Single matrix factorization depends on minimum eigengap.

error in factors $\propto \frac{1}{\min_{i,j} \text{ difference in eigenvalues}}$.

Simultaneous matrix factorization depends on average eigengap.

error in factors $\propto \frac{1}{\min_{i,j} \text{ average difference in eigenvalues}}$

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

Comparison with single matrix factorization

Single matrix factorization depends on minimum eigengap.

error in factors
$$\propto \frac{1}{\min_{i,j}}$$
 $\frac{|\lambda_i - \lambda_j|}{|\lambda_i - \lambda_j|}$

Simultaneous matrix factorization depends on average eigengap.

error in factors
$$\propto \frac{1}{\min_{i,j} \sum_{l=1}^{L} |\lambda_{il} - \lambda_{jl}|}$$

Kuleshov, Chaganty, Liang (Stanford University)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Tensor factorization

Tensor factorization via matrix factorization

Single matrix factorizations Simultaneous matrix factorizations

Oracle projections

Random projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 15 / 27

3

イロト イポト イヨト イヨト

Oracle projections

Oracle projections

Theorem

Pick k projections along the factors (u_i) . Then,

A D N A B N A B N A B N

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 16 / 27

э

Oracle projections

Oracle projections

Theorem

Pick k projections along the factors (*u_i*). Then,

$$\textit{error in factors} \leq O\left(\frac{\sqrt{\pi_{\max}}}{\pi_{\min}^2}\right)\epsilon.$$

A D N A B N A B N A B N

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 16 / 27

э

Oracle projections

Oracle projections

Theorem

Pick k projections along the factors (u_i) . Then,

error in factors
$$\leq O\left(\frac{\sqrt{\pi_{\max}}}{\pi_{\min}^2}\right)\epsilon.$$

A D N A B N A B N A B N

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 16 / 27

э

Outline

Tensor factorization

Tensor factorization via matrix factorization

Single matrix factorizations Simultaneous matrix factorizations Oracle projections Random projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 17 / 27

3

イロト イボト イヨト イヨト

Random projections

Theorem Pick $O(k \log k)$ projections randomly from the unit sphere.

Then, with probability $> 1 - \delta$,

< □ > < 同 > < 回 > < 回 > < 回 >

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

Random projections

Theorem

Pick $O(k \log k)$ projections randomly from the unit sphere. Then, with probability $> 1 - \delta$,

error in factors
$$\leq O\left(\frac{\sqrt{\pi_{\max}}}{\pi_{\min}^2}\right)\epsilon + C(\delta)\epsilon$$

< □ > < 同 > < 回 > < 回 > < 回 >

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

Random projections

Theorem

Pick $O(k \log k)$ projections randomly from the unit sphere. Then, with probability $> 1 - \delta$,

error in factors
$$\leq O\left(\frac{\sqrt{\pi_{\max}}}{\pi_{\min}^2}\right)\epsilon + C(\delta)\epsilon$$

< □ > < 同 > < 回 > < 回 > < 回 >

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

Random projections

Theorem

Pick $O(k \log k)$ projections randomly from the unit sphere. Then, with probability $> 1 - \delta$,

error in factors
$$\leq O\left(\frac{\sqrt{\pi_{\max}}}{\pi_{\min}^2}\right)\epsilon + C(\delta)\epsilon$$

< □ > < □ > < □ > < □ > < □ > < □ >

 As good as having oracle projections!

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

Final algorithm

Algorithm:

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 19 / 27

<ロ> <四> <四> <四> <四> <四</p>

Algorithm:

Project tensor on to O(k log k) random vectors.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 19 / 27

イロト 不得下 イヨト イヨト 二日

Algorithm:

- Project tensor on to $O(k \log k)$ random vectors.
- Recover approximate factors $\tilde{u}_i^{(0)}$ through simultaneous diagonalization.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

<□ ト < 部 ト < 臣 ト < 臣 ト 三 の Q (?) May 8, 2015 19 / 27

Algorithm:

- Project tensor on to $O(k \log k)$ random vectors.
- Recover approximate factors $\tilde{u}_i^{(0)}$ through simultaneous diagonalization.
- Project tensor on to approximated factors.

Kuleshov, Chaganty, Liang (Stanford University)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Algorithm:

- Project tensor on to $O(k \log k)$ random vectors.
- Recover approximate factors $\tilde{u}_i^{(0)}$ through simultaneous diagonalization.
- Project tensor on to approximated factors.
- Return factors *ũ_i* from simultaneous diagonalization.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Outline

Tensor factorization

Tensor factorization via matrix factorization

Single matrix factorizations Simultaneous matrix factorizations Oracle projections Random projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 20 / 27

3

イロト イポト イヨト イヨト

Naive approach: whitening non-orthogonal factors

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 21 / 27

A D N A B N A B N A B N

Naive approach: whitening non-orthogonal factors

 Use a whitening transformation to orthogonalize tensor (Anandkumar et al. 2013b).

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

Naive approach: whitening non-orthogonal factors

- Use a whitening transformation to orthogonalize tensor (Anandkumar et al. 2013b).
 - Is a major source of errors itself (Souloumiac 2009).

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

Non-orthogonal simultaneous diagonalization

$$\underbrace{\mathcal{T}(I,I,w_1)}_{M_1} = \underbrace{(w_1^\top u_1)}_{\lambda_{11}} u_1 u_1^\top + \underbrace{(w_1^\top u_2)}_{\lambda_{21}} u_2 u_2^\top + \underbrace{(w_1^\top u_3)}_{\lambda_{31}} u_3 u_3^\top$$

No unique non-orthogonal factorization for a single matrix.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 22 / 27

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Non-orthogonal simultaneous diagonalization

No unique non-orthogonal factorization for a single matrix.

 $\blacktriangleright \geq 2$ matrices have a unique non-orthogonal factorization.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 22 / 27

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへの

Non-orthogonal simultaneous diagonalization

No unique non-orthogonal factorization for a single matrix.

- $\blacktriangleright \geq 2$ matrices have a unique non-orthogonal factorization.
- **Note:** λ_{il} are factor weights, not eigenvalues.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 22 / 27

Non-orthogonal simultaneous diagonalization

► Algorithm: Simultaneously diagonalize projected matrices.

$$\widehat{U} = rg \max_{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}(U^{-1}M_{l}U^{- op}) \qquad \operatorname{off}(A) = \sum_{i \neq j} A_{ij}^{2}.$$

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 23 / 27

< □ > < 同 > < 回 > < 回 > < 回 >

Non-orthogonal simultaneous diagonalization

► Algorithm: Simultaneously diagonalize projected matrices.

$$\widehat{U} = \arg \max_{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}(U^{-1}M_{l}U^{-\top}) \qquad \operatorname{off}(A) = \sum_{i \neq j} A_{ij}^{2}.$$

► *U* are not constrained to be orthogonal.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 23 / 27

Non-orthogonal simultaneous diagonalization

► Algorithm: Simultaneously diagonalize projected matrices.

$$\widehat{U} = \arg \max_{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}(U^{-1}M_{l}U^{- op}) \qquad \operatorname{off}(A) = \sum_{i \neq j} A_{ij}^{2}.$$

- ► *U* are not constrained to be orthogonal.
- Optimize using the QR1JD algorithm (Souloumiac 2009).
 - Only guaranteed to have local convergence.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 23 / 27

< □ > < □ > < □ > < □ > < □ > < □ >

Results: Non-orthogonal simultaneous diagonalization

Theorem (Oracle projections)

Pick k projections along the factors (u_i) . Then,

error in factors
$$\leq O\left(\|U^{-\top}\|_2^3 \frac{\sqrt{\pi_{\max}}}{\pi_{\min}^2}\right) \epsilon$$
,

where $U = [u_1|\cdots|u_k]$.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 24 / 27

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results: Non-orthogonal simultaneous diagonalization

Theorem (Oracle projections)

Pick k projections along the factors (u_i) . Then,

error in factors
$$\leq O\left(\|\boldsymbol{U}^{-\top}\|_2^3 \frac{\sqrt{\pi_{\max}}}{\pi_{\min}^2}\right) \epsilon$$
,

where $U = [u_1|\cdots|u_k]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Tensor factorization

Tensor factorization via matrix factorization

Single matrix factorizations Simultaneous matrix factorizations Oracle projections Random projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 25 / 27

- 20

イロト イボト イヨト イヨト

Outline

Tensor factorization

Tensor factorization via matrix factorization

Single matrix factorizations Simultaneous matrix factorizations Oracle projections Random projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 26 / 27

3

イロト イボト イヨト イヨト

Conclusions

• Reduce tensor problems to matrix ones with $\tilde{O}(k)$ random projections.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 27 / 27

Conclusions

- Reduce tensor problems to matrix ones with $\tilde{O}(k)$ random projections.
- **Robust** to noise with general support for non-orthogonal factors.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 27 / 27

Conclusions

- Reduce tensor problems to matrix ones with $\tilde{O}(k)$ random projections.
- **Robust** to noise with general support for non-orthogonal factors.
- **Competitive empirical** performance.

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 27 / 2

Conclusions

- Reduce tensor problems to matrix ones with $\tilde{O}(k)$ random projections.
- **Robust** to noise with general support for non-orthogonal factors.
- **Competitive empirical** performance.
- Questions?

Kuleshov, Chaganty, Liang (Stanford University)

Tensor Factorization

May 8, 2015 27 / 27