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Tensor factorization

What is tensor (CP) factorization?
(Kolda and Bader 2009)

I Tensor analogue of matrix eigen-decomposition.

M =
k∑

i=1
πiui ⊗ ui .

I Goal: Given T with noise, εR, recover factors ui .

= + + · · ·+

k

= + + · · ·+

+

k

Orth
og

on
al

No
n-

or
th

og
on

al

= + + · · ·+ +

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 2 / 27



Tensor factorization

What is tensor (CP) factorization?
(Kolda and Bader 2009)

I Tensor analogue of matrix eigen-decomposition.

T =
k∑

i=1
πiui ⊗ ui⊗ui .

I Goal: Given T with noise, εR, recover factors ui .

= + + · · ·+

k

= + + · · ·+

+

k

Orth
og

on
al

No
n-

or
th

og
on

al

= + + · · ·+ +

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 2 / 27



Tensor factorization

What is tensor (CP) factorization?
(Kolda and Bader 2009)

I Tensor analogue of matrix eigen-decomposition.

T̂ =
k∑

i=1
πiui ⊗ ui⊗ui+εR.

I Goal: Given T with noise, εR, recover factors ui .

= + + · · ·+

k

= + + · · ·+ +

k

Orth
og

on
al

No
n-

or
th

og
on

al

= + + · · ·+ +

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 2 / 27



Tensor factorization

What is tensor (CP) factorization?
(Kolda and Bader 2009)

I Tensor analogue of matrix eigen-decomposition.

T̂ =
k∑

i=1
πiui ⊗ ui⊗ui+εR.

I Goal: Given T with noise, εR, recover factors ui .

= + + · · ·+

k

= + + · · ·+ +

k

Orth
og

on
al

No
n-

or
th

og
on

al

= + + · · ·+ +

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 2 / 27



Tensor factorization

Why tensor factorization?

I To solve multi-linear algebra problems.

I Parsing
I Cohen, Satta, and Collins 2013

I Knowledge base completion
I Chang et al. 2014
I Singh, Rocktäschel, and Riedel 2015

I Topic modelling
I Anandkumar et al. 2012

I Community detection
I Anandkumar et al. 2013a

I Learning latent variable graphical models
I Anandkumar et al. 2013b
I TODO: crowdsourcing

I TODO: others
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Tensor factorization

Existing tensor factorization algorithms

I Tensor power method (Anandkumar et al. 2013b)
I Analog of matrix power method.
I Sensitive to noise.
I Restricted to orthogonal tensors.

I Alternating least squares (Comon, Luciani, and Almeida 2009;
Anandkumar, Ge, and Janzamin 2014)

I Sensitive to initialization.
I Both operate on the tensor directly.
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Tensor factorization

Our approach

I Objective: a fast robust algorithm.

I Approach: use existing fast and robust matrix algorithms.

$
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Tensor factorization via matrix factorization Single matrix factorizations

Tensor factorization via single matrix factorization

T = π1u⊗3
1 + π2u⊗3

2 + π3u⊗3
3 + εR

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 7 / 27



Tensor factorization via matrix factorization Single matrix factorizations

Tensor factorization via single matrix factorization

T = u⊗3
1 + u⊗3

2 + u⊗3
3

↓

T (I, I,w) = (w>u1)︸ ︷︷ ︸
λ1

u1u>1 + (w>u2)︸ ︷︷ ︸
λ2

u2u>2 + (w>u3)︸ ︷︷ ︸
λ3

u3u>3

I Proposal: Eigen-decomposition on the projected matrix.
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Tensor factorization via matrix factorization Single matrix factorizations

Sensitivity of single matrix projection

= + +

+ +

I If two eigenvalues are equal, corresponding eigenvectors are arbitrary.
I Problem: Eigendecomposition is very sensitive to the eigengap.

error in factors ∝ 1
min(difference in eigenvalues) .
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Tensor factorization via matrix factorization Single matrix factorizations

Projections matter

I How can we leverage multiple projections?
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Tensor factorization via matrix factorization Simultaneous matrix factorizations

Enter simultaneous diagonalization

T (I, I,w1)︸ ︷︷ ︸
M1

= (w>1 u1)︸ ︷︷ ︸
λ11

u1u>1 + (w>1 u2)︸ ︷︷ ︸
λ21

u2u>2 + (w>1 u3)︸ ︷︷ ︸
λ31

u3u>3

...
...

...
...

T (I, I,wl)︸ ︷︷ ︸
Ml

= (w>l u1)︸ ︷︷ ︸
λ11

u1u>1 + (w>l u2)︸ ︷︷ ︸
λ21

u2u>2 + (w>l u3)︸ ︷︷ ︸
λ31

u3u>3

I Projections share factors.
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Tensor factorization via matrix factorization Simultaneous matrix factorizations

Algorithm

I Algorithm: Simultaneously diagonalize projected matrices.

Û = arg max
Û

L∑
l=1

off(U>MlU) off(A) =
∑
i 6=j

A2
ij .

I Optimize using the Jacobi angles (Cardoso and Souloumiac 1996).
I Multiple projections proposed in Anandkumar, Hsu, and Kakade 2012,

but didn’t use simultaneous diagonalization.
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Tensor factorization via matrix factorization Simultaneous matrix factorizations

Comparison with single matrix factorization

I Single matrix factorization depends on minimum eigengap.

error in factors ∝ 1
mini ,j difference in eigenvalues .

I Simultaneous matrix factorization depends on average eigengap.

error in factors ∝ 1
mini ,j average difference in eigenvalues

.
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I Single matrix factorization depends on minimum eigengap.

error in factors ∝ 1
mini ,j |λi − λj |

.
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Tensor factorization via matrix factorization Oracle projections
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Tensor factorization via matrix factorization Oracle projections

Oracle projections

Theorem
Pick k projections along the factors
(ui). Then,

error in factors ≤ O
(√

πmax
π2

min

)
ε.
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Tensor factorization via matrix factorization Random projections
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Tensor factorization via matrix factorization Random projections

Random projections

Theorem
Pick O(k log k) projections
randomly from the unit sphere.
Then, with probability > 1− δ,

error in factors ≤ O
(√

πmax
π2

min

)
ε

+ C(δ)ε

I As good as having oracle
projections!
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Tensor factorization via matrix factorization Random projections

Final algorithm

I Algorithm:

I Project tensor on to O(k log k) random vectors.
I Recover approximate factors ũ(0)

i through simultaneous diagonalization.
I Project tensor on to approximated factors.
I Return factors ũi from simultaneous diagonalization.
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Non-orthogonal tensor factorization
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Non-orthogonal tensor factorization

Naive approach: whitening non-orthogonal factors

= + + · · ·+

= + + · · ·+

I Use a whitening transformation to orthogonalize tensor (Anandkumar
et al. 2013b).

I Is a major source of errors itself (Souloumiac 2009).
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Non-orthogonal tensor factorization

Non-orthogonal simultaneous diagonalization

T (I, I,w1)︸ ︷︷ ︸
M1

= (w>1 u1)︸ ︷︷ ︸
λ11

u1u>1 + (w>1 u2)︸ ︷︷ ︸
λ21

u2u>2 + (w>1 u3)︸ ︷︷ ︸
λ31

u3u>3

...
...

...
...

T (I, I,wl)︸ ︷︷ ︸
Ml

= (w>l u1)︸ ︷︷ ︸
λ1l

u1u>1 + (w>l u2)︸ ︷︷ ︸
λ2l

u2u>2 + (w>l u3)︸ ︷︷ ︸
λ3l

u3u>3

I No unique non-orthogonal factorization for a single matrix.

I ≥ 2 matrices have a unique non-orthogonal factorization.
I Note: λil are factor weights, not eigenvalues.
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I Note: λil are factor weights, not eigenvalues.
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Non-orthogonal tensor factorization

Non-orthogonal simultaneous diagonalization

I Algorithm: Simultaneously diagonalize projected matrices.

Û = arg max
Û

L∑
l=1

off(U−1MlU−>) off(A) =
∑
i 6=j

A2
ij .

I U are not constrained to be orthogonal.
I Optimize using the QR1JD algorithm (Souloumiac 2009).

I Only guaranteed to have local convergence.
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Non-orthogonal tensor factorization

Results: Non-orthogonal simultaneous diagonalization

Theorem (Oracle projections)
Pick k projections along the factors (ui). Then,

error in factors ≤ O
(
‖U−>‖32

√
πmax
π2

min

)
ε,

where U = [u1| · · · |uk ].
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Empirical results
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Conclusions

Conclusions

$

I Reduce tensor problems to matrix ones with Õ(k) random projections.

I Robust to noise with general support for non-orthogonal factors.
I Competitive empirical performance.
I Questions?
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