Tensor Factorization via Matrix Factorization

Volodymyr Kuleshov*
Arun Tejasvi Chaganty*
Percy Liang

Stanford University
May 8, 2015

What is tensor (CP) factorization?

(Kolda and Bader 2009)

- Tensor analogue of matrix eigen-decomposition.

$$
M=\sum_{i=1}^{k} \pi_{i} u_{i} \otimes u_{i}
$$

What is tensor (CP) factorization?

(Kolda and Bader 2009)

- Tensor analogue of matrix eigen-decomposition.

$$
T=\sum_{i=1}^{k} \pi_{i} u_{i} \otimes u_{i} \otimes u_{i}
$$

What is tensor (CP) factorization?

(Kolda and Bader 2009)

- Tensor analogue of matrix eigen-decomposition.

$$
\widehat{T}=\sum_{i=1}^{k} \pi_{i} u_{i} \otimes u_{i} \otimes u_{i}+\epsilon R .
$$

- Goal: Given T with noise, ϵR, recover factors u_{i}.

What is tensor (CP) factorization?

(Kolda and Bader 2009)

- Tensor analogue of matrix eigen-decomposition.

$$
\widehat{T}=\sum_{i=1}^{k} \pi_{i} u_{i} \otimes u_{i} \otimes u_{i}+\epsilon R .
$$

- Goal: Given T with noise, ϵR, recover factors u_{i}.

Why tensor factorization?

- To solve multi-linear algebra problems.

Why tensor factorization?

- To solve multi-linear algebra problems.
- Parsing
- Cohen, Satta, and Collins 2013

Why tensor factorization?

- To solve multi-linear algebra problems.
- Parsing
- Cohen, Satta, and Collins 2013
- Knowledge base completion
- Chang et al. 2014
- Singh, Rocktäschel, and Riedel 2015

Why tensor factorization?

- To solve multi-linear algebra problems.
- Parsing
- Cohen, Satta, and Collins 2013
- Knowledge base completion
- Chang et al. 2014
- Singh, Rocktäschel, and Riedel 2015
- Topic modelling
- Anandkumar et al. 2012

Why tensor factorization?

- To solve multi-linear algebra problems.
- Parsing
- Cohen, Satta, and Collins 2013
- Knowledge base completion
- Chang et al. 2014
- Singh, Rocktäschel, and Riedel 2015
- Topic modelling
- Anandkumar et al. 2012
- Community detection
- Anandkumar et al. 2013a

Why tensor factorization?

- To solve multi-linear algebra problems.
- Parsing
- Cohen, Satta, and Collins 2013
- Knowledge base completion
- Chang et al. 2014
- Singh, Rocktäschel, and Riedel 2015
- Topic modelling
- Anandkumar et al. 2012
- Community detection
- Anandkumar et al. 2013a
- Learning latent variable graphical models
- Anandkumar et al. 2013b
- TODO: crowdsourcing
- TODO: others

Existing tensor factorization algorithms

- Tensor power method (Anandkumar et al. 2013b)
- Analog of matrix power method.
- Sensitive to noise.
- Restricted to orthogonal tensors.

Existing tensor factorization algorithms

- Tensor power method (Anandkumar et al. 2013b)
- Analog of matrix power method.
- Sensitive to noise.
- Restricted to orthogonal tensors.
- Alternating least squares (Comon, Luciani, and Almeida 2009; Anandkumar, Ge, and Janzamin 2014)
- Sensitive to initialization.

Existing tensor factorization algorithms

- Tensor power method (Anandkumar et al. 2013b)
- Analog of matrix power method.
- Sensitive to noise.
- Restricted to orthogonal tensors.
- Alternating least squares (Comon, Luciani, and Almeida 2009; Anandkumar, Ge, and Janzamin 2014)
- Sensitive to initialization.
- Both operate on the tensor directly.

Our approach

- Objective: a fast robust algorithm.

Our approach

- Objective: a fast robust algorithm.
- Approach: use existing fast and robust matrix algorithms.

Outline

Tensor factorization
Tensor factorization via matrix factorization Single matrix factorizations
Simultaneous matrix factorizations
Oracle projections Random projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Tensor factorization via single matrix factorization

Tensor factorization via single matrix factorization

Tensor factorization via single matrix factorization

T

$$
T(I, I, w)=\left(w^{\top} u_{1}\right) u_{1}^{\otimes 2}+\left(w^{\top} u_{2}\right) u_{2}^{\otimes 2}+\left(w^{\top} u_{3}\right) u_{3}^{\otimes 3}
$$

Tensor factorization via single matrix factorization

- Proposal: Eigen-decomposition on the projected matrix.

Sensitivity of single matrix projection

Sensitivity of single matrix projection

- If two eigenvalues are equal, corresponding eigenvectors are arbitrary.

Sensitivity of single matrix projection

- If two eigenvalues are equal, corresponding eigenvectors are arbitrary.

Sensitivity of single matrix projection

- If two eigenvalues are equal, corresponding eigenvectors are arbitrary.
- Problem: Eigendecomposition is very sensitive to the eigengap.

$$
\text { error in factors } \propto \frac{1}{\min (\text { difference in eigenvalues })}
$$

Projections matter

Projections matter

Projections matter

- How can we leverage multiple projections?

Outline

Tensor factorization

Tensor factorization via matrix factorization Single matrix factorizations

Simultaneous matrix factorizations

Oracle projections Random projections

Non-orthogonal tensor factorization
Empirical results

Conclusions

Enter simultaneous diagonalization

$$
\underbrace{\square\left(I, I, w_{1}\right)}_{M_{1}}=\underbrace{\left(w_{1}^{\top} u_{1}\right)}_{\lambda_{11}} u_{1} u_{1}^{\top}+\underbrace{\left(w_{1}^{\top} u_{2}\right)}_{\lambda_{21}} u_{2} u_{2}^{\top}+\underbrace{\left(w_{1}^{\top} u_{3}\right)}_{\lambda_{31}} u_{3} u_{3}^{\top}
$$

Enter simultaneous diagonalization

Enter simultaneous diagonalization

- Projections share factors.

Algorithm

- Algorithm: Simultaneously diagonalize projected matrices.

$$
\widehat{U}=\arg \max _{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}\left(U^{\top} M_{l} U\right)
$$

$$
\operatorname{off}(A)=\sum_{i \neq j} A_{i j}^{2}
$$

Algorithm

- Algorithm: Simultaneously diagonalize projected matrices.

$$
\widehat{U}=\arg \max _{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}\left(U^{\top} M_{l} U\right) \quad \operatorname{off}(A)=\sum_{i \neq j} A_{i j}^{2}
$$

- Optimize using the Jacobi angles (Cardoso and Souloumiac 1996).

Algorithm

- Algorithm: Simultaneously diagonalize projected matrices.

$$
\widehat{U}=\arg \max _{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}\left(U^{\top} M_{l} U\right) \quad \operatorname{off}(A)=\sum_{i \neq j} A_{i j}^{2}
$$

- Optimize using the Jacobi angles (Cardoso and Souloumiac 1996).
- Multiple projections proposed in Anandkumar, Hsu, and Kakade 2012, but didn't use simultaneous diagonalization.

Comparison with single matrix factorization

- Single matrix factorization depends on minimum eigengap.

$$
\text { error in factors } \propto \frac{1}{\min _{i, j} \text { difference in eigenvalues }}
$$

Comparison with single matrix factorization

- Single matrix factorization depends on minimum eigengap.

$$
\text { error in factors } \propto \frac{1}{\min _{i, j} \text { difference in eigenvalues }}
$$

- Simultaneous matrix factorization depends on average eigengap.

$$
\text { error in factors } \propto \frac{1}{\min _{i, j} \text { average difference in eigenvalues }} .
$$

Comparison with single matrix factorization

- Single matrix factorization depends on minimum eigengap.

$$
\text { error in factors } \propto \frac{1}{\min _{i, j}}
$$

- Simultaneous matrix factorization depends on average eigengap.

$$
\text { error in factors } \propto \frac{1}{\min _{i, j}} \frac{\sum_{l=1}^{L}\left|\lambda_{i l}-\lambda_{j l}\right|}{} .
$$

Outline

Tensor factorization

Tensor factorization via matrix factorization
Single matrix factorizations
Simultaneous matrix factorizations

Oracle projections

 Random projectionsNon-orthogonal tensor factorization
Empirical results

Conclusions

Oracle projections

Theorem

Pick k projections along the factors $\left(u_{i}\right)$. Then,

Oracle projections

Theorem
Pick k projections along the factors $\left(u_{i}\right)$. Then,

$$
\text { error in factors } \leq O\left(\frac{\sqrt{\pi_{\max }}}{\pi_{\min }^{2}}\right) \epsilon
$$

Oracle projections

Theorem
Pick k projections along the factors $\left(u_{i}\right)$. Then,

$$
\text { error in factors } \leq O\left(\frac{\sqrt{\pi_{\max }}}{\pi_{\min }^{2}}\right) \epsilon
$$

Outline

Tensor factorization

Tensor factorization via matrix factorization
Single matrix factorizations
Simultaneous matrix factorizations
Oracle projections
Random projections
Non-orthogonal tensor factorization
Empirical results

Conclusions

Random projections

Theorem
Pick $O(k \log k)$ projections randomly from the unit sphere.
Then, with probability $>1-\delta$,

Random projections

Theorem
Pick $O(k \log k)$ projections randomly from the unit sphere.
Then, with probability $>1-\delta$,

$$
\begin{aligned}
\text { error in factors } \leq & O\left(\frac{\sqrt{\pi_{\max }}}{\pi_{\min }^{2}}\right) \epsilon \\
& +C(\delta) \epsilon
\end{aligned}
$$

Random projections

Theorem
Pick $O(k \log k)$ projections randomly from the unit sphere.
Then, with probability $>1-\delta$,

$$
\begin{aligned}
\text { error in factors } \leq & O\left(\frac{\sqrt{\pi_{\max }}}{\pi_{\min }^{2}}\right) \epsilon \\
& +C(\delta) \epsilon
\end{aligned}
$$

Random projections

Theorem
Pick $O(k \log k)$ projections randomly from the unit sphere.
Then, with probability $>1-\delta$,

$$
\begin{aligned}
\text { error in factors } \leq & O\left(\frac{\sqrt{\pi_{\max }}}{\pi_{\min }^{2}}\right) \epsilon \\
& +C(\delta) \epsilon
\end{aligned}
$$

- As good as having oracle projections!

Final algorithm

- Algorithm:

Final algorithm

- Algorithm:
- Project tensor on to $O(k \log k)$ random vectors.

Final algorithm

- Algorithm:
- Project tensor on to $O(k \log k)$ random vectors.
- Recover approximate factors $\tilde{u}_{i}^{(0)}$ through simultaneous diagonalization.

Final algorithm

- Algorithm:
- Project tensor on to $O(k \log k)$ random vectors.
- Recover approximate factors $\tilde{u}_{i}^{(0)}$ through simultaneous diagonalization.
- Project tensor on to approximated factors.

Final algorithm

- Algorithm:
- Project tensor on to $O(k \log k)$ random vectors.
- Recover approximate factors $\tilde{u}_{i}^{(0)}$ through simultaneous diagonalization.
- Project tensor on to approximated factors.
- Return factors \tilde{u}_{i} from simultaneous diagonalization.

Outline

Tensor factorization

Tensor factorization via matrix factorization
Single matrix factorizations Simultaneous matrix factorizations Oracle projections Random projections

Non-orthogonal tensor factorization
Empirical results

Conclusions

Naive approach: whitening non-orthogonal factors

Naive approach: whitening non-orthogonal factors

- Use a whitening transformation to orthogonalize tensor (Anandkumar et al. 2013b).

Naive approach: whitening non-orthogonal factors

- Use a whitening transformation to orthogonalize tensor (Anandkumar et al. 2013b).
- Is a major source of errors itself (Souloumiac 2009).

Non-orthogonal simultaneous diagonalization

- No unique non-orthogonal factorization for a single matrix.

Non-orthogonal simultaneous diagonalization

- No unique non-orthogonal factorization for a single matrix.
- ≥ 2 matrices have a unique non-orthogonal factorization.

Non-orthogonal simultaneous diagonalization

- No unique non-orthogonal factorization for a single matrix.
- ≥ 2 matrices have a unique non-orthogonal factorization.
- Note: $\lambda_{i l}$ are factor weights, not eigenvalues.

Non-orthogonal simultaneous diagonalization

- Algorithm: Simultaneously diagonalize projected matrices.

$$
\widehat{U}=\arg \max _{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}\left(U^{-1} M_{l} U^{-\top}\right) \quad \operatorname{off}(A)=\sum_{i \neq j} A_{i j}^{2}
$$

Non-orthogonal simultaneous diagonalization

- Algorithm: Simultaneously diagonalize projected matrices.

$$
\widehat{U}=\arg \max _{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}\left(U^{-1} M_{l} U^{-\top}\right) \quad \operatorname{off}(A)=\sum_{i \neq j} A_{i j}^{2}
$$

- U are not constrained to be orthogonal.

Non-orthogonal simultaneous diagonalization

- Algorithm: Simultaneously diagonalize projected matrices.

$$
\widehat{U}=\arg \max _{\widehat{U}} \sum_{l=1}^{L} \operatorname{off}\left(U^{-1} M_{l} U^{-\top}\right) \quad \operatorname{off}(A)=\sum_{i \neq j} A_{i j}^{2}
$$

- U are not constrained to be orthogonal.
- Optimize using the QR1JD algorithm (Souloumiac 2009).
- Only guaranteed to have local convergence.

Results: Non-orthogonal simultaneous diagonalization

Theorem (Oracle projections)
Pick k projections along the factors $\left(u_{i}\right)$. Then,

$$
\text { error in factors } \leq O\left(\left\|U^{-\top}\right\|_{2}^{3} \frac{\sqrt{\pi_{\max }}}{\pi_{\min }^{2}}\right) \epsilon
$$

where $U=\left[u_{1}|\cdots| u_{k}\right]$.

Results: Non-orthogonal simultaneous diagonalization

Theorem (Oracle projections)
Pick k projections along the factors $\left(u_{i}\right)$. Then,

$$
\text { error in factors } \leq O\left(\left\|U^{-\top}\right\|_{2}^{3} \frac{\sqrt{\pi_{\max }}}{\pi_{\min }^{2}}\right) \epsilon
$$

where $U=\left[u_{1}|\cdots| u_{k}\right]$.

Outline

Tensor factorization

Tensor factorization via matrix factorization
Single matrix factorizations
Simultaneous matrix factorizations
Oracle projections
Random projections

Non-orthogonal tensor factorization
Empirical results

Conclusions

Outline

Tensor factorization

Tensor factorization via matrix factorization
Single matrix factorizations Simultaneous matrix factorizations Oracle projections Random projections

Non-orthogonal tensor factorization

Empirical results

Conclusions

Conclusions

- Reduce tensor problems to matrix ones with $\tilde{O}(k)$ random projections.

Conclusions

- Reduce tensor problems to matrix ones with $\tilde{O}(k)$ random projections.
- Robust to noise with general support for non-orthogonal factors.

Conclusions

- Reduce tensor problems to matrix ones with $\tilde{O}(k)$ random projections.
- Robust to noise with general support for non-orthogonal factors.
- Competitive empirical performance.

Conclusions

- Reduce tensor problems to matrix ones with $\tilde{O}(k)$ random projections.
- Robust to noise with general support for non-orthogonal factors.
- Competitive empirical performance.
- Questions?

