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Parameter Estimation is Hard

— log pp(x)

» Log-likelihood function is non-convex.

» MLE is consistent but intractable.

» Local methods (EM, gradient descent, etc.) are tractable but
inconsistent.

» Can we build an efficient and consistent estimator?
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Solution: Tensor Factorization
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Tensor Factorization for a Generative Model

Solution: Tensor Factorization
AnandkumarGeHsu2012

k 3
> E[x®%] = Y4y w3y
» If By, are orthogonal, they are h
eigenvectors!

E[x*®](Bh, B) = ThBh.
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Mixture of Linear Regressions
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Tensor Factorization for a Discriminative Model

Recovering Parameters

» Mz € E[3%] = Sk, w85

» Apply tensor factorization!
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Exploiting Low-rank Structure. fazel2002matrix
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Key Idea: Expose tensor factorization structure through regression.
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Theory: Polynomial sample and computational complexity.

» Experiments: Method of moment estimates can be a good
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» Consistent estimator for the mixture of linear regressions
» Key ldea: Expose tensor factorization structure through regression.
» Theory: Polynomial sample and computational complexity.

» Experiments: Method of moment estimates can be a good
initialization for EM.
» Future Work: How can we handle other discriminative models?

» Dependencies between h and x (mixture of experts).
» Non-linear link functions (hidden variable logistic regression).
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Conclusions

Thank you!
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