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Introduction

Latent Variable Models

I Generative Models

I Gaussian Mixture Models
I Hidden Markov Models
I Latent Dirichlet Allocation
I PCFGs
I . . .

I Discriminative Models

I Mixture of Experts
I Latent CRFs
I Discriminative LDA
I . . .

I Easy to include features and
tend to be more accurate.
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Introduction

Parameter Estimation is Hard

θ

−
lo

gp
θ
(x

)

I Log-likelihood function is non-convex.

I MLE is consistent but intractable.
I Local methods (EM, gradient descent, etc.) are tractable but

inconsistent.
I Can we build an efficient and consistent estimator?
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Introduction

Related Work

I Method of Moments [Pearson, 1894]

I Observable operators
I Control Theory [Ljung, 1987]
I Observable operator models [Jaeger, 2000; Littman/Sutton/Singh,

2004]
I Hidden Markov models [Hsu/Kakade/Zhang, 2009]
I Low-treewidth graphs [Parikh et al., 2012]
I Weighted finite state automata [Balle & Mohri, 2012]

I Parameter Estimation
I Mixture of Gaussians [Kalai/Moitra/Valiant, 2010]
I Mixture models, HMMs [Anandkumar/Hsu/Kakade, 2012]
I Latent Dirichlet Allocation [Anandkumar/Hsu/Kakade, 2012]
I Stochastic block models [Anandkumar/Ge/Hsu/Kakade, 2012]
I Linear Bayesian networks [Anandkumar/Hsu/Javanmard/Kakade, 2012]
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Tensor Factorization for a Generative Model

Aside: Tensor Operations

I Tensor Product

x⊗3 = x ⊗ x ⊗ x
x⊗3

ijk = xixjxk

I Inner product

〈A,B〉 =
∑
ijk

AijkBijk

= 〈vec A, vec B〉

= × ×

〈 , 〉 = 0.5

〈 , 〉 = 0.5
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Tensor Factorization for a Generative Model

Example: Gaussian Mixture Model
anandkumar12moments

I Generative process:

h ∼ Mult([π1, π2, · · · , πk ])
x ∼ N (βh, σ

2).

I Moments:

E[x |h] = βh

E[x ] =
∑

h
πhβh

E[x⊗2] =
∑

h
πh(βhβ

T
h ) + σ2

=
∑

h
πhβh

⊗2 + σ2

E[x⊗3] =
∑

h
πhβ

⊗3
h + bias.

h

x
x1

x 2

E[x⊗2]d

d

E[x⊗3]d
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Tensor Factorization for a Generative Model

Solution: Tensor Factorization

AnandkumarGeHsu2012

I E[x⊗3] =
∑k

h=1 πhβ
⊗3
h .

I If βh are orthogonal, they are
eigenvectors!

E[x⊗3](βh, βh) = πhβh.

I In general, whiten E[x⊗3] first.

h

x
x1

x 2

= + + · · ·+

k
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Tensor Factorization for a Generative Model

h

x

Generative Models

hx

y

Discriminative Models
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Tensor Factorization for a Discriminative Model

Mixture of Linear Regressions

hx

y

I Given x

I h ∼ Mult([π1, π2, · · · , πk ]).
I y = βT

h x + ε.

x
y
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Tensor Factorization for a Discriminative Model

Mixture of Linear Regressions

x

y


π1
π2
...
πk


β1 β2 . . . βk


︸ ︷︷ ︸

B

?
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Tensor Factorization for a Discriminative Model

Finding Tensor Structure

y = 〈 βh , x〉+ ε

= 〈E[βh], x〉︸ ︷︷ ︸
linear measurement

+ 〈(βh − E[βh]), x〉+ ε︸ ︷︷ ︸
noise

E[βh] =
∑

h πhβh.
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Tensor Factorization for a Discriminative Model

Finding Tensor Structure

y =
linear measurement︷ ︸︸ ︷
〈E[βh], x〉 +

noise︷ ︸︸ ︷
(βh − E[βh])T x + ε

y2 = (〈βh, x〉+ ε)2

= 〈E[β⊗2
h ]︸ ︷︷ ︸

M2

, x⊗2〉 + bias2 + noise2

y3 = 〈E[β⊗3
h ]︸ ︷︷ ︸

M3

, x⊗3〉 + bias3 + noise3

〈 , 〉

〈 , 〉

〈 , 〉
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Tensor Factorization for a Discriminative Model

Recovering Parameters

I M3
def= E[β⊗3

h ] = ∑k
h=1 πhβ⊗3

h

I Apply tensor factorization!

= + + · · ·+

k
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Tensor Factorization for a Discriminative Model

Overview: Spectral Experts

{
x⊗2, y2}

(x ,y)∈D

{
x⊗3, y3}

(x ,y)∈D

M2

M3

π,Btensor factorization

regression tensor factorization
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π,Btensor factorization

regression tensor factorization
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Tensor Factorization for a Discriminative Model

Exploiting Low-rank Structure.

fazel2002matrix
tomioka2010estimation

M̂2 = arg min
M

∑
(x ,y)∈D

(
y2 −

〈
M, x⊗2

〉
− bias2
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Tensor Factorization for a Discriminative Model

Sample Complexity

NegahbanWainwright2009;
Tomioka2011

AnandkumarGeHsu2012
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On Initialization (Cartoon)
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Experimental Insights

On Initialization (Cartoon)
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Conclusions

Conclusions

I Consistent estimator for the mixture of linear regressions

I Key Idea: Expose tensor factorization structure through regression.
I Theory: Polynomial sample and computational complexity.
I Experiments: Method of moment estimates can be a good

initialization for EM.
I Future Work: How can we handle other discriminative models?

I Dependencies between h and x (mixture of experts).
I Non-linear link functions (hidden variable logistic regression).

Chaganty, Liang (Stanford University) Spectral Experts January 28, 2016 21 / 22



Conclusions

Conclusions

I Consistent estimator for the mixture of linear regressions
I Key Idea: Expose tensor factorization structure through regression.

I Theory: Polynomial sample and computational complexity.
I Experiments: Method of moment estimates can be a good

initialization for EM.
I Future Work: How can we handle other discriminative models?

I Dependencies between h and x (mixture of experts).
I Non-linear link functions (hidden variable logistic regression).

Chaganty, Liang (Stanford University) Spectral Experts January 28, 2016 21 / 22



Conclusions

Conclusions

I Consistent estimator for the mixture of linear regressions
I Key Idea: Expose tensor factorization structure through regression.
I Theory: Polynomial sample and computational complexity.

I Experiments: Method of moment estimates can be a good
initialization for EM.

I Future Work: How can we handle other discriminative models?

I Dependencies between h and x (mixture of experts).
I Non-linear link functions (hidden variable logistic regression).

Chaganty, Liang (Stanford University) Spectral Experts January 28, 2016 21 / 22



Conclusions

Conclusions

I Consistent estimator for the mixture of linear regressions
I Key Idea: Expose tensor factorization structure through regression.
I Theory: Polynomial sample and computational complexity.
I Experiments: Method of moment estimates can be a good

initialization for EM.

I Future Work: How can we handle other discriminative models?

I Dependencies between h and x (mixture of experts).
I Non-linear link functions (hidden variable logistic regression).

Chaganty, Liang (Stanford University) Spectral Experts January 28, 2016 21 / 22



Conclusions

Conclusions

I Consistent estimator for the mixture of linear regressions
I Key Idea: Expose tensor factorization structure through regression.
I Theory: Polynomial sample and computational complexity.
I Experiments: Method of moment estimates can be a good

initialization for EM.
I Future Work: How can we handle other discriminative models?

I Dependencies between h and x (mixture of experts).
I Non-linear link functions (hidden variable logistic regression).

Chaganty, Liang (Stanford University) Spectral Experts January 28, 2016 21 / 22



Conclusions

Conclusions

I Consistent estimator for the mixture of linear regressions
I Key Idea: Expose tensor factorization structure through regression.
I Theory: Polynomial sample and computational complexity.
I Experiments: Method of moment estimates can be a good

initialization for EM.
I Future Work: How can we handle other discriminative models?

I Dependencies between h and x (mixture of experts).

I Non-linear link functions (hidden variable logistic regression).

Chaganty, Liang (Stanford University) Spectral Experts January 28, 2016 21 / 22



Conclusions

Conclusions

I Consistent estimator for the mixture of linear regressions
I Key Idea: Expose tensor factorization structure through regression.
I Theory: Polynomial sample and computational complexity.
I Experiments: Method of moment estimates can be a good

initialization for EM.
I Future Work: How can we handle other discriminative models?

I Dependencies between h and x (mixture of experts).
I Non-linear link functions (hidden variable logistic regression).

Chaganty, Liang (Stanford University) Spectral Experts January 28, 2016 21 / 22



Conclusions

Thank you!
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