Spectral Experts for Estimating Mixtures of Linear Regressions

Arun Tejasvi Chaganty Percy Liang

Stanford University

January 28, 2016

Latent Variable Models

- Generative Models

Latent Variable Models

- Generative Models
- Gaussian Mixture Models
- Hidden Markov Models
- Latent Dirichlet Allocation
- PCFGs

Latent Variable Models

- Generative Models
- Gaussian Mixture Models
- Hidden Markov Models
- Latent Dirichlet Allocation
- PCFGs
- Discriminative Models

Latent Variable Models

- Generative Models
- Gaussian Mixture Models
- Hidden Markov Models
- Latent Dirichlet Allocation
- PCFGs
- Discriminative Models
- Mixture of Experts
- Latent CRFs
- Discriminative LDA
- ...

Latent Variable Models

- Generative Models
- Gaussian Mixture Models
- Hidden Markov Models
- Latent Dirichlet Allocation
- PCFGs
- Discriminative Models
- Mixture of Experts
- Latent CRFs
- Discriminative LDA
- Easy to include features and

Parameter Estimation is Hard

θ

- Log-likelihood function is non-convex.

Parameter Estimation is Hard

θ

- Log-likelihood function is non-convex.
- MLE is consistent but intractable.

Parameter Estimation is Hard

θ

- Log-likelihood function is non-convex.
- MLE is consistent but intractable.
- Local methods (EM, gradient descent, etc.) are tractable but inconsistent.

Parameter Estimation is Hard

- Log-likelihood function is non-convex.
- MLE is consistent but intractable.
- Local methods (EM, gradient descent, etc.) are tractable but inconsistent.
- Can we build an efficient and consistent estimator?

Related Work

- Method of Moments [Pearson, 1894]

Related Work

- Method of Moments [Pearson, 1894]
- Observable operators
- Control Theory [Ljung, 1987]
- Observable operator models [Jaeger, 2000; Littman/Sutton/Singh, 2004]
- Hidden Markov models [Hsu/Kakade/Zhang, 2009]
- Low-treewidth graphs [Parikh et al., 2012]
- Weighted finite state automata [Balle \& Mohri, 2012]

Related Work

- Method of Moments [Pearson, 1894]
- Observable operators
- Control Theory [Ljung, 1987]
- Observable operator models [Jaeger, 2000; Littman/Sutton/Singh, 2004]
- Hidden Markov models [Hsu/Kakade/Zhang, 2009]
- Low-treewidth graphs [Parikh et al., 2012]
- Weighted finite state automata [Balle \& Mohri, 2012]
- Parameter Estimation
- Mixture of Gaussians [Kalai/Moitra/Valiant, 2010]
- Mixture models, HMMs [Anandkumar/Hsu/Kakade, 2012]
- Latent Dirichlet Allocation [Anandkumar/Hsu/Kakade, 2012]
- Stochastic block models [Anandkumar/Ge/Hsu/Kakade, 2012]
- Linear Bayesian networks [Anandkumar/Hsu/Javanmard/Kakade, 2012]

Outline

Introduction

Tensor Factorization for a Generative Model

Tensor Factorization for a Discriminative Model

Experimental Insights

Conclusions

Aside: Tensor Operations

- Tensor Product

$$
\begin{aligned}
& x^{\otimes 3}=x \otimes x \otimes x \\
& x_{i j k}^{\otimes 3}=x_{i} x_{j} x_{k}
\end{aligned}
$$

Aside: Tensor Operations

- Tensor Product

$$
\begin{aligned}
& x^{\otimes 3}=x \otimes x \otimes x \\
& x_{i j k}^{\otimes 3}=x_{i} x_{j} x_{k}
\end{aligned}
$$

- Inner product

$$
\langle A, B\rangle=\sum_{i j k} A_{i j k} B_{i j k}
$$

Aside: Tensor Operations

- Tensor Product

$$
\begin{aligned}
& x^{\otimes 3}=x \otimes x \otimes x \\
& x_{i j k}^{\otimes 3}=x_{i} x_{j} x_{k}
\end{aligned}
$$

- Inner product

$$
\begin{aligned}
\langle A, B\rangle & =\sum_{i j k} A_{i j k} B_{i j k} \\
& =\langle\operatorname{vec} A, \operatorname{vec} B\rangle
\end{aligned}
$$

$$
\rangle=0.5
$$

Example: Gaussian Mixture Model

anandkumar12moments

- Generative process:

$$
\begin{aligned}
& h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right) \\
& x \sim \mathcal{N}\left(\beta_{h}, \sigma^{2}\right) .
\end{aligned}
$$

Example: Gaussian Mixture Model

anandkumar12moments

- Generative process:

$$
\begin{aligned}
& h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right) \\
& x \sim \mathcal{N}\left(\beta_{h}, \sigma^{2}\right)
\end{aligned}
$$

- Moments:

$$
\mathbb{E}[x \mid h]=\beta_{h}
$$

Example: Gaussian Mixture Model

anandkumar12moments

- Generative process:

$$
\begin{aligned}
& h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right) \\
& x \sim \mathcal{N}\left(\beta_{h}, \sigma^{2}\right) .
\end{aligned}
$$

- Moments:

$$
\begin{aligned}
\mathbb{E}[x \mid h] & =\beta_{h} \\
\mathbb{E}[x] & =\sum_{h} \pi_{h} \beta_{h}
\end{aligned}
$$

Example: Gaussian Mixture Model

anandkumar12moments

- Generative process:

$$
\begin{aligned}
& h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right) \\
& x \sim \mathcal{N}\left(\beta_{h}, \sigma^{2}\right) .
\end{aligned}
$$

- Moments:

$$
\begin{aligned}
\mathbb{E}[x \mid h] & =\beta_{h} \\
\mathbb{E}[x] & =\sum_{h} \pi_{h} \beta_{h} \\
\mathbb{E}\left[x^{\otimes 2}\right] & =\sum_{h} \pi_{h}\left(\beta_{h} \beta_{h}^{T}\right)+\sigma^{2} \\
& =\sum_{h} \pi_{h} \beta_{h}{ }^{\otimes 2}+\sigma^{2}
\end{aligned}
$$

Example: Gaussian Mixture Model

anandkumar12moments

- Generative process:

$$
\begin{aligned}
& h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right) \\
& x \sim \mathcal{N}\left(\beta_{h}, \sigma^{2}\right) .
\end{aligned}
$$

- Moments:

$$
\begin{aligned}
\mathbb{E}[x \mid h] & =\beta_{h} \\
\mathbb{E}[x] & =\sum_{h} \pi_{h} \beta_{h} \\
\mathbb{E}\left[x^{\otimes 2}\right] & =\sum_{h} \pi_{h}\left(\beta_{h} \beta_{h}^{T}\right)+\sigma^{2} \\
& =\sum_{h} \pi_{h} \beta_{h}{ }^{\otimes 2}+\sigma^{2} \\
\mathbb{E}\left[x^{\otimes 3}\right] & =\sum_{h} \pi_{h} \beta_{h}^{\otimes 3}+\text { bias. }
\end{aligned}
$$

Solution: Tensor Factorization

- $\mathbb{E}\left[x^{\otimes 3}\right]=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes 3}$.

Solution: Tensor Factorization

- $\mathbb{E}\left[x^{\otimes 3}\right]=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes 3}$.

Solution: Tensor Factorization

AnandkumarGeHsu2012

- $\mathbb{E}\left[x^{\otimes 3}\right]=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes 3}$.
- If β_{h} are orthogonal, they are eigenvectors!

$$
\mathbb{E}\left[x^{\otimes 3}\right]\left(\beta_{h}, \beta_{h}\right)=\pi_{h} \beta_{h} .
$$

Solution: Tensor Factorization

AnandkumarGeHsu2012

- $\mathbb{E}\left[x^{\otimes 3}\right]=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes 3}$.
- If β_{h} are orthogonal, they are eigenvectors!

$$
\mathbb{E}\left[x^{\otimes 3}\right]\left(\beta_{h}, \beta_{h}\right)=\pi_{h} \beta_{h} .
$$

- In general, whiten $\mathbb{E}\left[x^{\otimes 3}\right]$ first.

Generative Models

Discriminative Models

Generative Models

Discriminative Models

Mixture of Linear Regressions

Mixture of Linear Regressions

- Given x
- $h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right)$.

Mixture of Linear Regressions

- Given x
- $h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right)$.
- $y=\beta_{h}^{T} x+\epsilon$.

Mixture of Linear Regressions

- Given x
- $h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right)$.
- $y=\beta_{h}^{T} x+\epsilon$.

Mixture of Linear Regressions

- Given x
- $h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right)$.
- $y=\beta_{h}^{T} x+\epsilon$.

Mixture of Linear Regressions

- Given x

$$
\begin{aligned}
& \Rightarrow h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right) \\
& >y=\beta_{h}^{T} x+\epsilon
\end{aligned}
$$

Mixture of Linear Regressions

- Given x

$$
\begin{aligned}
& \Rightarrow h \sim \operatorname{Mult}\left(\left[\pi_{1}, \pi_{2}, \cdots, \pi_{k}\right]\right) \\
& >y=\beta_{h}^{T} x+\epsilon
\end{aligned}
$$

Mixture of Linear Regressions

Finding Tensor Structure

$$
y=\left\langle\beta_{h}, x\right\rangle+\epsilon
$$

Finding Tensor Structure

$$
y=\langle\underbrace{\beta_{h}}_{\text {random }}, x\rangle+\epsilon
$$

Finding Tensor Structure

$$
\begin{array}{rlr}
y & =\langle\underbrace{\beta_{h}}_{\text {random }}, x\rangle+\epsilon \\
& =\left\langle\mathbb{E}\left[\beta_{h}\right], x\right\rangle+\left\langle\left(\beta_{h}-\mathbb{E}\left[\beta_{h}\right]\right), x\right\rangle+\epsilon \quad \mathbb{E}\left[\beta_{h}\right]=\sum_{h} \pi_{h} \beta_{h} .
\end{array}
$$

Finding Tensor Structure

$$
\begin{aligned}
y & =\langle\underbrace{\beta_{h}}_{\text {random }}, x\rangle+\epsilon \\
& =\underbrace{\left\langle\mathbb{E}\left[\beta_{h}\right], x\right\rangle}_{\text {linear measurement }}+\left\langle\left(\beta_{h}-\mathbb{E}\left[\beta_{h}\right]\right), x\right\rangle+\epsilon \quad \mathbb{E}\left[\beta_{h}\right]=\sum_{h} \pi_{h} \beta_{h} .
\end{aligned}
$$

Finding Tensor Structure

$$
\begin{aligned}
y & =\langle\underbrace{\beta_{h}}_{\text {random }}, x\rangle+\epsilon \\
& =\underbrace{\left\langle\mathbb{E}\left[\beta_{h}\right], x\right\rangle}_{\text {linear measurement }}+\underbrace{\left\langle\left(\beta_{h}-\mathbb{E}\left[\beta_{h}\right]\right), x\right\rangle+\epsilon}_{\text {noise }} \quad \mathbb{E}\left[\beta_{h}\right]=\sum_{h} \pi_{h} \beta_{h} .
\end{aligned}
$$

Finding Tensor Structure

Finding Tensor Structure

$$
\begin{aligned}
& y=\overbrace{\left\langle\mathbb{E}\left[\beta_{h}\right], x\right\rangle}^{\text {linear measurement }}+\overbrace{\left(\beta_{h}-\mathbb{E}\left[\beta_{h}\right]\right)^{T} x+\epsilon}^{\text {noise }}\langle\square, \square\rangle \\
& y^{2}=\left(\left\langle\beta_{h}, x\right\rangle+\epsilon\right)^{2}
\end{aligned}
$$

Finding Tensor Structure

$$
\begin{aligned}
y^{2} & =\left(\left\langle\beta_{h}, x\right\rangle+\epsilon\right)^{2} \\
& =\left\langle\mathbb{E}\left[\beta_{h}^{\otimes 2}\right], x^{\otimes 2}\right\rangle \quad+\text { bias }_{2}+\text { noise }_{2}
\end{aligned}
$$

Finding Tensor Structure

Finding Tensor Structure

$$
\begin{aligned}
& \text { linear measurement } \\
& y=\overbrace{\left\langle\mathbb{E}\left[\beta_{h}\right], x\right\rangle} \\
& +\overbrace{\left(\beta_{h}-\mathbb{E}\left[\beta_{h}\right]\right)^{T} x+\epsilon}^{\text {noise }} \\
& y^{2}=\left(\left\langle\beta_{h}, x\right\rangle+\epsilon\right)^{2} \\
& =\langle\underbrace{\mathbb{E}\left[\beta_{h}^{\otimes 2}\right]}_{M_{2}}, x^{\otimes 2}\rangle \\
& + \text { bias }_{2}+\text { noise }_{2} \\
& y^{3}=\langle\underbrace{\mathbb{E}\left[\beta_{h}^{\otimes 3}\right]}_{M_{3}}, x^{\otimes 3}\rangle \\
& + \text { bias3 }_{3}+\text { noise }_{3}
\end{aligned}
$$

Recovering Parameters

- $M_{3} \stackrel{\text { def }}{=} \mathbb{E}\left[\beta_{h}^{\otimes 3}\right]=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes 3}$

Recovering Parameters

- $M_{3} \stackrel{\text { def }}{=} \mathbb{E}\left[\beta_{h}^{\otimes 3}\right]=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes 3}$

Recovering Parameters

- $M_{3} \stackrel{\text { def }}{=} \mathbb{E}\left[\beta_{h}^{\otimes 3}\right]=\sum_{h=1}^{k} \pi_{h} \beta_{h}^{\otimes 3}$
- Apply tensor factorization!

Overview: Spectral Experts

Overview: Spectral Experts

Assumptions:

Overview: Spectral Experts

Overview: Spectral Experts

Exploiting Low-rank Structure.

$$
\hat{M}_{2}=\arg \min _{M} \sum_{(x, y) \in \mathcal{D}}\left(y^{2}-\left\langle M, x^{\otimes 2}\right\rangle-\operatorname{bias}_{2}\right)^{2}
$$

Exploiting Low-rank Structure.

$$
\hat{M}_{2}=\arg \min _{M} \sum_{(x, y) \in \mathcal{D}}\left(y^{2}-\left\langle M, x^{\otimes 2}\right\rangle-\operatorname{bias}_{2}\right)^{2}+\underbrace{\|M\|_{*}}_{\sum_{i} \sigma_{i}(M)}
$$

Exploiting Low-rank Structure.

$$
\hat{M}_{3}=\arg \min _{M} \sum_{(x, y) \in \mathcal{D}}\left(y^{3}-\left\langle M, x^{\otimes 3}\right\rangle-\operatorname{bias}_{3}\right)^{2}+\|M\|_{*}
$$

Sample Complexity

Sample Complexity

NegahbanWainwright2009;
Tomioka2011

$$
\begin{gathered}
\left.\left\{x^{\otimes 2}, y^{2}\right\}_{(x, y) \in \mathcal{D}} \xrightarrow{\longrightarrow} M_{2} M_{3}\right] \xrightarrow[\text { low-rank regression }]{\substack{\text { tensor factorization }}} \pi, B \\
\left\{x^{\otimes 3}, y^{3}\right\}_{(x, y) \in \mathcal{D}} \xrightarrow{\text { tensor factorization }} \\
O\left(k\|x\|^{12}\|\beta\|^{6}\left\|\mathbb{E}\left[\epsilon^{2}\right]\right\|^{6}\right)
\end{gathered}
$$

Sample Complexity

NegahbanWainwright2009;
 Tomioka2011
 AnandkumarGeHsu2012

$$
\left.\begin{array}{rl}
\left\{x^{\otimes 2}, y^{2}\right\}_{(x, y) \in \mathcal{D}} & \longrightarrow M_{2} \\
\left\{x^{\otimes 3}, y^{3}\right\}_{(x, y) \in \mathcal{D}} & \\
\text { low-rank regression } & \\
\text { tensor factorization }
\end{array}\right], B
$$

Experimental Insights

$$
\begin{aligned}
& y=\beta^{T} \underbrace{\left[\begin{array}{c}
1 \\
t \\
t^{4} \\
t^{7}
\end{array}\right]}_{x}+\epsilon \\
& k=3, d=4, n=10^{5}
\end{aligned}
$$

Experimental Insights

$$
\begin{aligned}
& y=\beta^{T} \underbrace{\left[\begin{array}{c}
1 \\
t \\
t^{4} \\
t^{7}
\end{array}\right]}_{x}+\epsilon \\
& k=3, d=4, n=10^{5}
\end{aligned}
$$

Experimental Insights

Experimental Insights

Experimental Insights

Experimental Insights

$$
d=5, k=2
$$

On Initialization (Cartoon)

θ

Conclusions

- Consistent estimator for the mixture of linear regressions

Conclusions

- Consistent estimator for the mixture of linear regressions
- Key Idea: Expose tensor factorization structure through regression.

Conclusions

- Consistent estimator for the mixture of linear regressions
- Key Idea: Expose tensor factorization structure through regression.
- Theory: Polynomial sample and computational complexity.

Conclusions

- Consistent estimator for the mixture of linear regressions
- Key Idea: Expose tensor factorization structure through regression.
- Theory: Polynomial sample and computational complexity.
- Experiments: Method of moment estimates can be a good initialization for EM.

Conclusions

- Consistent estimator for the mixture of linear regressions
- Key Idea: Expose tensor factorization structure through regression.
- Theory: Polynomial sample and computational complexity.
- Experiments: Method of moment estimates can be a good initialization for EM.
- Future Work: How can we handle other discriminative models?

Conclusions

- Consistent estimator for the mixture of linear regressions
- Key Idea: Expose tensor factorization structure through regression.
- Theory: Polynomial sample and computational complexity.
- Experiments: Method of moment estimates can be a good initialization for EM.
- Future Work: How can we handle other discriminative models?
- Dependencies between h and x (mixture of experts).

Conclusions

- Consistent estimator for the mixture of linear regressions
- Key Idea: Expose tensor factorization structure through regression.
- Theory: Polynomial sample and computational complexity.
- Experiments: Method of moment estimates can be a good initialization for EM.
- Future Work: How can we handle other discriminative models?
- Dependencies between h and x (mixture of experts).
- Non-linear link functions (hidden variable logistic regression).

Thank you!

