
Learning in a Small World

Arun Tejasvi Chaganty
Deptt. of Computer Science

and Engineering,
IIT Madras

Chennai, India - 600036
arunc@cse.iitm.ac.in

Prateek Gaur
Deptt. of Computer Science

and Engineering,
IIT Madras

Chennai, India - 600036
prtkgaur@cse.iitm.ac.in

Balaraman Ravindran
Deptt. of Computer Science

and Engineering,
IIT Madras

Chennai, India - 600036
ravi@cse.iitm.ac.in

ABSTRACT
Understanding how we are able to perform a diverse set of
complex tasks is a central question for the Artificial Intel-
ligence community. A popular approach is to use temporal
abstraction as a framework to capture the notion of sub-
tasks. However, this transfers the problem to finding the
right subtasks, which is still an open problem. Existing ap-
proaches for subtask generation require too much knowledge
of the environment, and the abstractions they create can
overwhelm the agent. We propose a simple algorithm in-
spired by small world networks to learn subtasks while solv-
ing a task that requires virtually no information of the envi-
ronment. Additionally, we show that the subtasks we learn
can be easily composed by the agent to solve any other task;
more formally, we prove that any task can be solved using
only a logarithmic combination of these subtasks and prim-
itive actions. Experimental results show that the subtasks
we generate outperform other popular subtask generation
schemes on standard domains.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods and Search

General Terms
Algorithms, Theory, Experimentation

Keywords
reinforcement learning, options framework, social network
analysis, small world phenomenon

1. INTRODUCTION
Reinforcement learning (RL) is a widely studied learning

framework for autonomous agents, particularly because of
it’s extreme generality; it addresses the problem of learning
optimal agent behaviour in an unknown stochastic environ-
ment. In this setting, an agent explores a state space, receiv-
ing rewards for actions it takes; the objective of the agent
is to maximise it’s rewards accumlated over time. However,

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

when scaling up to larger domains, these agents require pro-
hibitively large amounts of experience in order to learn a
good policy. By allowing the agent to exploit the struc-
ture of environment or task, we can reduce the experience
required.

Structure can be imposed on a learning task through ei-
ther spatial or temporal abstractions. With the former, the
state-space is minimised using information about the sym-
metries present in the domain. Spatial abstractions have
been surveyed in [6]. In the latter case, high-level actions
are introduced which capture sequences of primitive actions.
In this light, temporal abstractions capture the notion of
a “subtask”. The most common approach for temporal ab-
stractions is the options framework proposed by Sutton, Pre-
cup and Singh [12], and we build our work on this framework
also. Work by Ravindran and Barto on relativised options
[11] show how temporal abstractions can be combined with
spatial abstractions. Both spatial and temporal abstractions
play an important role in transfer learning, where we wish
to extend optimal behaviour learnt in one task to another
task; a survey of such techniques can be found in [14].

While options provide a broad framework for temporal
abstraction, there is still no consensus on how to choose sub-
tasks. The prevalent view is that subtasks should represent
skills, i.e. partially defined action policies that constitute
a part of many reinforcement learning problems [15]. For
this reason, much of the existing work centres around iden-
tifying ‘bottlenecks’, regions that the agent tends to visit
frequently [9], either empirically as in [9], or, more recently,
using graph theoretic methods like betweenness centrality
[2] or graph partitions [10]. The intuition is that options
that navigate an agent to such states helps the agent move
between strongly connected components, thus leading to ef-
ficient exploration.

These option generation schemes suffer from two serious
drawbacks; (i) they either require complete knowledge of the
MDP or follow a sample-heavy approach of constructing a
local model from trajectories, and (ii) there are, in general,
several options to bottlenecks that can be initiated by the
agent. This leads leading to a blowup in the decision space,
often causing the agent to take more time to learn the task
as it filters through the unnecessary options.

If one considered these options as additional edges to the
bottleneck states, in the sense that a single decision is suf-
ficient to transit the agent from a state, to the bottleneck,
the resultant state-interaction graph would now be “more”
connected. To highlight the importance of the connectivity
of the state-interaction graph, consider the Markov chain in-

duced by a policy for an Markov decision process. It is well
known that the convergence rate of a Markov chain (mixing
time), is directly related to its conductance [4], and thus its
algebraic connectivity.

Recognising the importance of connectivity, we apply con-
cepts from Kleinberg’s work on small world networks, to the
context of problem solving with autonomous agents. These
graphs have been shown to have exceptionally high alge-
braic connectivity, and thus fast Markov chain mixing times
[13]. In a small-world network, each node has one non-
neighbouring edge, which connected to another node with
a probability inversely proportional to the distance between
them. With this simple construction, Kleinberg showed that
an agent can discover a short path to any destination using
only local information like the coordinates of it’s immediate
neighbours [5]. In contrast, other graph models with a small
diameter only state the existence of a short path, but do not
guarantee that an agent would be able to find such a path.

In our context, we construct subtasks distributed accord-
ing to the small world distribution as follows; create an op-
tion that will take the agent from a state s to another state
s′ with a probability inversely proportional to the distance
between s and s′. We prove that this set of subtasks enables
the agent to easily solve any task by using only a logarithmic
number of options to reach a state of maximal value (Sec-
tion 3). As this scheme adds at most one additional option
per state, we do not explode the decision space for the agent.

Furthermore, in Section 4, we devise an algorithm that
learns small world options from the optimal policies learnt
over a few tasks in the domain. Thus not only are small
world options effective to use, they are also simple to learn,
and do not require any global analysis of the MDP. Ex-
periments on several standard domains show that small-
world options outperform bottleneck-based methods, and
that small world options require significantly fewer learning
epochs to be effective.

The remainder of the paper is organised as follows. We
present an overview of reinforcement learning, and the op-
tions framework in Section 2. We then define a small world
option, and prove that given such options, an agent will re-
quire to use only a logarithmic number of them to perform
a task in Section 3. From a more practical perspective, we
present an algorithm to extract these options from optimal
policies learnt on several tasks in the domain in Section 4.
We present our experimental results in Section 5. Finally, we
conclude in Section 6, where we present future directions for
our work. Appendix A contains an extension of Kleinberg’s
proof for the distributed search property of small-world net-
works which is used in Section 3.

2. BACKGROUND
In reinforcement learning, the standard representation of

an environment and task instance is a Markov decision pro-
cess (MDP). An MDP can be represented as the tuple,
〈S,A, P,R, γ〉, where S and A are finite sets of states and
actions, P : S × A × S → [0, 1] describes the dynamics
of the world through state-action transition probabilites,
R : S × A → R describes the task at hand by ascribing
rewards for state transitions, and γ ∈ [0, 1] is a discount
factor that weighs the value of future rewards.

In this setting, an agent in a state s ∈ S chooses an action
a ∈ A, and moves to a state s′ with probability P (s, a, s′),
receiving a reward R(s, s′). The objective of the agent is to

find a policy π : S ×A→ [0, 1], i.e. a decision procedure for
selecting actions, that maximises the reward it accumulates
in the long run, R =

∑
i γ

iri. R is also called the return.
We define the value function V : S → R to be the expected

return from s, and Q : S×A→ R to be the expected return
from s, after taking the action a. The optimal value function
must satisfy the Bellman optimality equation,

V (s) = max
a

R (s, a) + γ
∑
s′∈S

P
(
s, a, s′

)
V
(
s′
)

Q (s, a) = R (s, a) + γ
∑
s′∈S

P
(
s, a, s′

)
max
a′

Q
(
s′, a′

)
.

Given an optimal Q, an agent can construct an optimal
policy, π(s, a∗) = 1 when a∗ = argmaxaQ(s, a), and 0 oth-
erwise. In principle, if the agent knew the MDP, it could
construct the optimal value function, and from it an opti-
mal policy. However, in the usual setting, the agent is only
aware of the state-action space, S and A, and must learn
Q through exploration. The Q-learning algorithm learns Q
with a simple update for every step the agent takes,

Q (s, a) = Q (s, a) + α

[
r + γmax

a′
Q
(
s′, a′

)
−Q (s, a)

]
,

where α ∈ [0, 1] is a parameter that controls the learning
rate. It has been shown that the Q-learning algorithm con-
verges to the optimal value function in the limit with fairly
permissive assumptions.

The options framework provides a temporal abstraction
through subtasks. An option 〈I, π, β〉 is described by an
initiation set I ⊂ S, a policy π, and a terminating condition
β. An agent can exercise an option in any state s ∈ I,
following which, it will follow the policy π described by the
option, until the terminating condition β(s) is satisfied. The
terminating condition β can be stochastic.

Several learning algorithms have been proposed for agents
using options [12, 1]. One simple such method that we will
use is MacroQ, a generalisation of the Q-learning algorithm
described above. The MacroQ algorithm updates the value
function only after completion of the option. If the option o
was initiated in the state s, and continues for k steps before
terminating in s′, the corresponding Q function update will
be,

Q (s, o) = Q (s, o) + α

[
r + γk max

o′∈A∪O
Q
(
s′, o′

)
−Q (s, o)

]
.

Different tasks in the same domain can be described by
different R. Let R be sampled from the family R. Our
objective then is to find a set of options O that reduces the
expected learning time over R.

Example 1. To make the discussion more tangible, let us
look at an example, the Taxi domain, shown in Figure 1.
The agent is a taxi navigating in this road-map. It must
pick up a passenger at one of the 4 pads, R, G, B or Y.
Subsequently, it must carry the passenger to a destination,
which is also one of the above four pads. The states of
the taxi would then be a tuple containing the location of
the passenger (in one of the four pads, or within the taxi),
the destination of the passenger, and location of the taxi in
the map. The actions the taxi can perform are moving up,
down, left or right in the map, as well as pick up or drop
a passenger at a pad. Typical options for such a domain
would be an option that can be started anywhere, and has

R

Y B

G

Figure 1: The Taxi Domain

a policy that takes the taxi to the one of the pads in the
shortest possible manner. Such an option is generic, and
does not depend on where the passenger or destination are.
The RL agent must then learn to choose the right option
when picking up the passenger.

3. SMALL WORLD OPTIONS
In Kleinberg’s small-world network model, each node u

is given one ‘long-range’ edge to a node v, which was cho-
sen with a probability Pr(u, v) ∝ ‖u− v‖−r, where ‖u− v‖
denotes the least distance between nodes u and v in the
graph. Similarly for each state s, we add a single ‘path op-
tion’ to another state s′, where s′ is chosen with probability
Pr(s, s

′) ∝ ‖s − s′‖−r. A path option op(s, s
′) is an option

with I = {s}, β = {s′}, and an optimal policy to reach s′

for π. Intuitively, it is an option that takes the agent from s
to s′. In practice, we may generate path options for only a
subset of |S|. Note that while this results in O(|S|) options,
only one additional option is available in any state, and thus
the decision-space for the agent is not significantly larger.

On an r-dimensional lattice, Kr, the distance from any
node u to a target node t is bounded by ‖u− t‖, a quantity
which is locally computable. When given long-range edges
distributed according to Pr, Kleinberg showed that a greedy
distributed algorithm GA that chooses a neighbour v closest
to t will reach t with an expected time O(log(|V |)2). This
follows as a trivial corollary of the following theorem,

Theorem 1. Let f : V → R be a function embedded on
the graph G(V,E), such that, κ1‖u − v‖ − c1 ≤ ‖f(u) −
f(v)‖ ≤ κ2‖u−v‖−c2, where 0 ≤ κ1 ≤ κ2, and 0 ≤ c2 ≤ c1

2
.

Let Mf be the global maxima of f . Let GAε be an ε-greedy
algorithm with respect to f , i.e. an algorithm which chooses
with probability 1 − ε to transit to the neighbouring state
closest to Mf , i.e. N(u) = argminv ‖f(v)− f(Mf)‖.

If G(V,E) is r-dimensional lattice, and contains a long
distance edge distributed Pr, then GAε takes O((log |V |)2)
steps to reach Mf .

Proof. The key insight of the proof is that with edges
distributed according to Pr, there will be, with high proba-
bility, a edge within the neighbourhood of a node to an ex-
ponentially smaller neighbourhood of the target. Thus, the
agent will only require to hop through log |V | ‘neighbour-
hoods’. By bounding the time spent in each neighbourhood
to log |V |, we arrive at the result. We refer the reader to
Appendix A for the complete proof.

Figure 2: The State Space Graph for Taxi

It is easy to construct a graph GM out of the state-space
described by an MDP. The states S become the nodes of the
graph, and actions A become the edges, with the transition
probabilities as weights. Options can be viewed as paths
along the graph. As an example, the Taxi domain defined
earlier translates to the graph shown in Figure 2.

Consider an MDP MKr with states connected in a r-
dimensional lattice, and noisy navigational actions between
states. We claim that by using robust path options dis-
tributed according to Pr, an ε-greedy agent can reach a state
of maximal value using O(log(|S|)2) options, using the value
function V as a local property of the state.

Definition 1. A robust path option o(u, v), where u, v ∈ S
is an option that takes the agent from u to v ‘robustly’, in
the sense that in each epoch, the agent moves closer to v
with a probability 1 − ε > 1

2
. 1. Note that this ε includes

any environmental effects as well.

The following lemma relates V to the graph distance from
the target state, thus allowing us to apply Theorem 1.

Lemma 1. Let o(u, v) be the preferred option in state u,
and let ‖u− v‖V = | log V(v)− log V(u)|. Then,

k1‖u− v‖ − c1 ≤ ‖u− v‖V ≤ k2‖u− v‖,

where k1 = log 1
γ

, k2 = log 1
(1−ε)γ , and c1 = log 1

1−γ .

Proof. From the Bellman optimality condition, we get
the value of o(u, v) to be,

Q (u, o (u, v)) = El

[
γl V (v) +

l∑
i=1

γi−1ri

]
,

where l is the length of the option, and ri is the reward
obtained in the i-th step of following the option.

If o(u,v) is the preferred option in state u, then V(u) =
Q(u, o(u, v)). Using the property that 0 ≤ ri ≤ 1,

El[γ
l V(v)] ≤ V(u) ≤ El[γ

l V(v) +

l∑
i=1

γi−1]

El[γ
l] V(v) ≤ V(u) ≤ El[γ

l] V(v) +
1

1− γ . (1)

1This condition is equivalent to saying that the option takes
the agent from u to v in finite time, and hence is not partic-
ularly strong.

El is an expectation over the length of the option. Using
the property that o(u, v) is robust, we move closer to v with
probability ε̄ = 1− ε; this is exactly the setting of the well-
studied gambler’s ruin problem, where the gambler begins
with a budget of ‖u− v‖, and wins with a probability of ε.
Using a standard result from Feller[3], with m = ‖u − v‖,
we have,

El
[
xl
]

=

∞∑
l=0

P (L = l)xl =
1

λm1 (x) + λm2 (x)
,

where λ1(x) =
1+
√

1−4εε̄x2

2ε̄x
, and λ2(x) =

1−
√

1−4ε̄εx2

2ε̄x
. When

x ≤ 1,

1

(λ1(x) + λ2(x))m
≤ El[xl] ≤

∞∑
l=m

P (L = l)xl

1

(2
2ε̄x

)m
≤ El[xl] ≤

∞∑
l=m

P (L = l)xm

(ε̄x)m ≤ El[xl] ≤ xm.

Substituting x = γ and m = ‖u − v‖ into Equation (1),
we get,

El[γ
l] V(v) ≤ V(u) ≤ El[γ

l] V(v) +
1

1− γ

(ε̄γ)‖u−v‖V(v) ≤ V(u) ≤ γ‖u−v‖V(v) +
1

1− γ

‖u− v‖ log
1

γ
− log

1

1− γ ≤ ‖u− v‖V ≤ ‖u− v‖ log
1

ε̄γ
.

Thus, an ε-greedy agent acting with respect to its value
function can reach the maxima of the value function us-
ing just O((log |S|)2) decisions. Though this result strictly
applies only to the lattice setting, we observe that many
MDPs are composed of lattice-like regions of local connec-
tivity connected via bottleneck states. The presence of such
bottleneck states would only increase the expected time by
a constant factor.

4. OPTIONS FROM EXPERIENCE
In Section 3, we remarked that we needed O(|S|) options.

In order to be practical, we require an algorithm to effi-
ciently generate these options within a budget of training
epochs. The proof of Theorem 1 provides us with a crucial
insight – our options only need bring the agent into an expo-
nentially smaller neighbourhood of the maximal value state.
This suggests that cheaply generated options may still be
acceptable.

The algorithm (Algorithm 1) we propose takes a given
MDP M , and trains an agent to learn T different tasks (i.e.
different R) on it, evenly dividing the epoch budget amongst
them. With each learned task, we certainly will have a good
policy for path options from any state to the state of max-
imal value, Mv. However, we observe that will also have
a good policy for path options from u to v is the path is
‘along the gradient’ of Q, i.e. when V (u) < V (v) < V (Mv).
Observing that V (s) ≈ argmaxv Q(s, π(s)), we detail the
algorithm to construct many options options from a single
Q-value function in Algorithm 2.

Algorithm 1 Small World Options from Experience

Require: M , R, r, n, epochs, T
1: O ← ∅
2: for i = 0→ T do
3: R ∼ R
4: Q← Solve M with R using epochs

T
epochs

5: O′ ← QOptions(Q, r, n
T

)
6: O ← O ∪O′
7: end for
8: return A random subset of n options from O

Algorithm 2 QOptions: Options from a Q-Value Func-
tion
Require: Q, r, n
1: O ← ∅
2: π ← greedy policy from Q
3: for all s in S do
4: Choose an s′ according to Pr
5: if Q(s′, π(s′)) > Q(s, π(s)) then
6: O ← O ∪ 〈{s}, π, {s′} ∪ {t | Q(s′, π(s′)) <

Q(t, π(t))}〉
7: end if
8: end for s in S
9: return A random subset of n options from O

We note here except for sampling s′ from Pr, we do not
require any knowledge of the MDP, nor do we need to con-
struct a local model of the same. In fact, s′ can be sampled
approximately using the expected path length instead of the
graph distance in Pr. As the expected path length E[l] is
only a constant factor greater than l (l

ε̄
), Lemma 1 continues

to hold.

5. EXPERIMENTAL RESULTS
We trained MacroQ learning agents on several standard

domains, and measured the cumulative return obtained us-
ing the following option generation schemes:

• None: No options were used.

• Random: Options were generated by randomly con-
necting two nodes in the domain (this is equivalent to
P0).

• Betweenness: As a representative of bottleneck-based
schemes, options were generated to take any node to
a local maxima of betweenness centrality, as described
in [2].

• Small World: Options were generated randomly con-
necting two nodes of the domain using an inverse square
law, as described in Section 3.

Each experiment, unless mentioned otherwise, was run for
10 randomly generated tasks in the domain; each task ran
for 40, 000 epochs, and was averaged over an ensemble of 20
agents.

5.1 Optimal Options
The agents were run on the following three domains using

the algorithm sketched in Section 3:

Arbt. Navi Rooms Taxi
None -31.82 -1.27 -16.90

Random -31.23 -10.76 -18.83
Betw. -18.28 -8.94 80.48
Sm-W -14.24 [r = 4] 8.54[r = 2] 0.66 [r = 0.75]

Table 1: Cumulative Return

• Arbitrary Navigation: The agent must reach an
arbitrary goal state in an obstacle-free x×y grid-world.

• Rooms: The agent must navigate a floor plan with 4
rooms to reach an arbitrary goal state.

• Taxi: This is the domain described in Example 1.

Optimal policies were given to the options generated ac-
cording to the schemes described above.

The results of these experiments are summarised in Ta-
ble Table 1. Small world options perform significantly bet-
ter than the other schemes in navigation-oriented tasks like
Rooms or Arbitrary Navigation. In the Taxi domain, op-
tions generated by the betweenness scheme outperform the
small world options. This is expected because the goal states
in this domain lie at betweenness maxima.

S

G

Figure 3: Rooms: Options learnt

Some of the small world options preferred in Rooms do-
main are shown in Figure 3. The graph shows several exam-
ples of options that compose together to arrive near the goal
state. We have also plotted the learning behaviour in Fig-
ure 4. The option scheme “Betweenness + SW” combines
options to betweenness maxima with small world options.
Expectedly, it significantly outperforms all other schemes.
The options to betweenness maxima help take the agent be-
tween strongly connected regions, while the small world op-
tions help the agent navigate within the strongly connected
region.

5.2 Sensitivity of r
Figure 5 plots r versus the cumulative return on the Rooms

domain. We do not yet have a clear understanding of how
the exponent r should be chosen. The performance of the
agent without options after 20, 000 epochs is also plotted for
reference. There is a range of r (≈ 0.75 to 1.5) with good

Figure 4: Rooms: Cumulative Return with 200 op-
tions

Figure 5: Rooms: r vs Cumulative Return

performance, after which the performance steadily drops.
This behaviour is easily explained; as the exponent goes up,
the small world options generated are very short, and do not
help the agent get nearer to the maximal value state. The
optimal range of r is slightly counter-intuitive because the
Rooms domain is a two dimensional lattice with some edges
removed. As a consequence of the reduced connectivity, and
perhaps due to stochastic factors, longer range options are
preferred.

5.3 Options Learnt on a Budget
In Section 4, we describe an algorithm to construct small

world options efficiently when given a limited number of
learning epochs. We compared the performance of these op-
tions with betweenness options learnt similarly, and have
plotted our results in Figure 6. Despite using many more
options, the small world options thus created significantly
outperform betweenness options learnt with the same bud-
get, and are even comparable to the optimal betweenness
options.

6. CONCLUSIONS AND FUTURE WORK
We have devised a new scheme to generate options based

on small world network model. The options generated sat-

Figure 6: Rooms: Options Learnt on a Budget

isfy an intuitive criteria, that the subtasks learnt should be
easily composed to solve any other task. The options greatly
improve the connectivity properties of the domain, without
leading to a state space blow up.

Experiments run on standard domains show significantly
faster learning rates using small world options. At the same
time, we have shown that learning small world options can
be cheaper than learning bottleneck options, using a natural
algorithm that extracts options from a handful of tasks it has
solved. Another advantage of the scheme is that is does not
require a model of the MDP.

As future work, we would like to characterise what the
exponent r should be in a general domain. There are some
technicalities to be worked out in extending our results to the
continuous domain; however, as most real-life applications
are continuous in nature, this is an important further direc-
tion we are looking at. Given the ease with which options
can be discovered, it would be interesting to experiment with
a dynamic scheme that adds options on the fly, while solving
tasks. [7] extend Kleinberg’s results to arbitrary graphs by
using rank instead of lattice distance. It would be interest-
ing to extend this approach to the reinforcement learning
setting. The logarithmic bounds on the number of decisions
presented may have some interesting consequences on theo-
retical guarantees of sample complexity as well.

7. REFERENCES
[1] A. G. Barto and S. Mahadevan. Recent Advances in

Hierarchical Reinforcement Learning Markov and
Semi-Markov Decision Processes. pages 1–28, 2003.

[2] O. Şimşek and A. G. Barto. Skill characterization
based on betweenness. In NIPS, pages 1–8, 2008.

[3] W. Feller. An Introduction to Probability Theory and
Its Applications, volume 1. Wiley, 1968.

[4] M. Jerrum and A. Sinclair. Conductance and the
rapid mixing property for markov chains: the
approximation of permanent resolved. In Proceedings
of the twentieth annual ACM symposium on Theory of
computing, STOC ’88, pages 235–244, New York, NY,
USA, 1988. ACM.

[5] J. Kleinberg. The Small-World Phenomenon : An
Algorithmic Perspective. ACM Theory of Computing,
32:163–170, 2000.

[6] L. Li, T. J. Walsh, and M. L. Littman. Towards a
Unified Theory of State Abstraction for MDPs. In In
Proceedings of the Ninth International Symposium on
Artificial Intelligence and Mathematics, pages
531–539, 2006.

[7] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan,
and A. Tomkins. Geographic routing in social
networks. PNAS, pages 1–6, 2005.

[8] C. Martel and V. Nguyen. Analyzing Kleinberg’s (and
other) Small-world Models. In PODC, volume 2, 2004.

[9] A. McGovern and A. G. Barto. Automatic Discovery
of Subgoals in Reinforcement Learning using Diverse
Density. In ICML, pages 1–8, 2001.

[10] I. Menache, S. Mannor, and N. Shimkin. Q-Cut -
Dynamic Discovery of Sub-Goals in Reinforcement
Learning. In ECML, 2002.

[11] B. Ravindran and A. G. Barto. Relativized Options :
Choosing the Right Transformation. In International
Conference on Machine Learning, 2003.

[12] R. S. Sutton, D. Precup, and S. Singh. Between MDPs
and Semi-MDPs : Learning , Planning , and
Representing Knowledge at Multiple Temporal Scales
at Multiple Temporal Scales. Artificial Intelligence,
112:181–211, 1999.

[13] A. Tahbaz-Salehi and A. Jadbabaie. Small world
phenomenon, rapidly mixing markov chains, and
average consensus algorithms. In Decision and
Control, 2007 46th IEEE Conference on, pages 276
–281, 2007.

[14] M. E. Taylor and P. Stone. Transfer Learning for
Reinforcement Learning Domains: A Survey. Journal
of Machine Learning Research, 10:1633–1685, 2009.

[15] S. Thrun and A. Schwartz. Finding Structure in
Reinforcement Learning. In Advances in Neural
Information Processing Systems 7, pages 385–392,
1995.

APPENDIX
A. SMALL WORLDS

In this section we will tackle the proof of the main theorem
in Section 3,

Theorem 2. Let f : V → R be a function embedded on
the graph G(V,E), such that, κ1‖u − v‖ − c1 ≤ ‖f(u) −
f(v)‖ ≤ κ2‖u−v‖−c2, where 0 ≤ κ1 ≤ κ2, and 0 ≤ c2 ≤ c1

2
.

Let Mf be the global maxima of f . Let GAε be an ε-greedy
algorithm with respect to f , i.e. an algorithm which chooses
with probability 1 − ε to transit to the neighbouring state
closest to Mf , i.e. N(u) = argminv ‖f(v)− f(Mf)‖.

If G(V,E) is r-dimensional lattice, and contains a long
distance edge distributed according to Pr : p(u, v) ∝ ‖u −
v‖−r, then GAε takes O((log |V |)2) steps to reach Mf .

Proof. This result is a simple extension of Kleinberg’s
result in [5], and follows the proof presented there, albeit
with the somewhat cleaner notation and formalism of [8].
We begin by defining the necessary formalism to present the
proof.

Definition 2. Let us define Bl(u) to be the set of nodes
contained within a“ball”of radius l centered at u, i.e. Bl(u) =
{v | ‖u − v‖ < l}, and bl(u) to be the set of nodes on its
surface, i.e. bl(u) = {v | ‖u− v‖ = l}.

Given a function f : V → R embedded on G(V,E), we
analogously define Bf

l(u) = {v | |f(u) − f(v)| < l}. For
notational convenience, we take Bf

l to be Bf
l(Mf).

The inverse normalised coefficient for p(u, v) is,

cu =
∑
v 6=u

‖u− v‖−r

=

r(n−1)∑
j=1

bj (u) j−r.

It can easily be shown that the bl(u) = Θ(lk−1). Thus, cu
reduces to a harmonic sum, and is hence equal to Θ(logn).
Thus, p(u, v) = ‖u− v‖−rΘ(logn)−1.

We are now ready to prove that GAε takes O((log |V |)2)
decisions. The essence of the proof is summarised in Fig-
ure 7. Let a node u be in phase j when u ∈ Bf

2j+1 \Bf
2j .

The probability that phase j will end this step is equal to
the probability that N(u) ∈ Bf

2j .

The size of Bf
2j is at least |B 2j+c2

κ2

| = Θ(2j+c2
κ2

). The

distance between u and a node in Bf
2j is at most 2j+1+c1

κ1
+

2j+c2
κ2

< 2(2j+1+c2
κ2

). The probability of a link between these

two nodes is at least (2j+2+2c1
κ1

)−rΘ(logn)−1. Thus,

P
(
u,Bf

2j

)
≥ (1− ε)

Θ (logn)

(
2j + c2
κ2

)r
×
(

2j+2 + 2c1
κ1

)−r
≥ (1− ε)

Θ (logn)
×
(
κ1

4κ2

)r
×

(
1 + c2

2j

1 + c1
2×2j

)r
≥ (1− ε)

Θ (logn)
×
(
κ1

4κ2

)r
×
(

1 + c2
1 + c1

2

)r
.

G

Θ((21)2) nodes

Θ((22)2) nodes

Θ((23)2) nodes

Θ((2j)r) nodes

Pr ≈ (2j)r×(2j+2)−r

Θ(log n)

Figure 7: Exponential Neighbourhoods

Let number of decisions required to leave phase j be Xj .
Then,

E [Xj] ≤
∞∑
i=0

(
1− P

(
u,Bf

2j

))i
≤ 1

P (u,Bf
2j)

≤ Θ (logn)
1

(1− ε)

(
4κ2

κ1

)r (1 + c1
2

1 + c2

)r
≤ Θ (logn) .

Thus, it takes at most O(logn) decisions to leave phase j.
By construction, there are at most logn phases, and thus at
most O((logn)2) decisions.

	Introduction
	Background
	Small World Options
	Options from Experience
	Experimental Results
	Optimal Options
	Sensitivity of r
	Options Learnt on a Budget

	Conclusions and Future Work
	References
	Small Worlds

