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ABSTRACT

In order for artificially intelligent agents to reliably interact and solve problems

in the world, they must be able to learn from decisions they have made in the

past. Reinforcement learning provides an elegant framework to model agent

learning through interaction with an environment. Generalising this experience

to different tasks within the same environment as well as across environments

remains a key challenge for the community. Despite a generally sound under-

standing of how previous knowledge could be incorporated in the agent, viz.

through options and homomorphisms, there are few well-founded approaches

to actually selecting experiences at an appropriate granularity, or to adapting

them to the current context.

This project proposes two approaches to the problem based on spatial and

temporal abstractions respectively. Spatial abstractions, such as MDP homo-

morphisms, allow the agent to optimally transfer decision policies from one

environment to another. We extend the current homomorphism framework to

the tricky domain of continuous state and action spaces. Building on this the-

oretical foundation, we describe an algorithm to search for homomorphisms

through gradient descent in the space of affine continuous homomorphisms.

We show that the homomorphisms the method finds are intuitive, and can sig-

nificantly reduce learning times in new domains.

Temporal abstractions, on the other hand, allow an agent to decompose a

task into subtasks. By extending a well known result on small world networks

in social networks, we show how to generate a set of subtasks of subtasks that

efficiently span the space of all tasks. In experiments on standard domains, our

agent outperforms competing subtask-selection algorithms. We also show that

the subtasks we choose can be learnt more efficiently than existing methods.
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CHAPTER 1

Introduction

Reinforcement learning (RL) is a widely studied learning framework for au-

tonomous agents, particularly because of it’s extreme generality; it addresses

the problem of learning optimal agent behaviour in an unknown stochastic en-

vironment. In this setting, an agent explores a state space, receiving rewards

for actions it takes; the objective of the agent is to maximise it’s rewards ac-

cumulated over time. In the conventional setting, the agent approaches each

new problem from scratch. We would like to study how the agent can exploit

solutions it has already learnt in order to solve a new task.

1.1 Exploiting Structure

To reuse behavioural policies, we need to either identify some ‘structure’ in the

environment or to impose such ‘structure’ ourselves to transfer the policy. This

structure is roughly identified through spatial and temporal abstractions. One

approach for the former is to form a hierarchical representation of the envi-

ronment, creating a factored MDP (Guestrin et al., 2003). Yet another, one that

we adopt in this work, is to identify correspondences, or homomorphisms, be-

tween states either in the same environment (i.e. a “symmetry”), or between

environments. There exist several criteria for these correspondences; Li et al.

(2006a) present a survey of various approaches taken in the community, and

relate them to each other.

With temporal abstractions, high-level actions are introduced which capture

sequences of primitive actions. In this light, temporal abstractions capture the

notion of a “subtask”. The most common approach for temporal abstractions

is the options framework proposed by Sutton et al. (1999); we adopt this frame-

work as well. Ravindran and Barto (2003) show how temporal abstractions can

be combined with spatial abstractions using relativised options. Both spatial



and temporal abstractions play an important role in transfer learning, where

we wish to extend optimal behaviour learnt in one task to another task. These

approaches fall under the broader field of transfer learning; a survey of many

other transfer learning techniques can be found in Taylor and Stone (2009).

1.1.1 A Motivating Example: Controlling an Octopus Arm

Figure 1.1: Dynamics of an Octopus Arm

As a motivating example for abstraction, consider the control of an octopus

arm, as shown in Figure 1.1. This arm can be modelled as a composition of 10

compartments, each of which can be controlled by contracting longitudinal and

transverse muscles (Engel et al., 2006). In total, there are 88 continuous state

variables associated with the arm, and it is controlled with a 32 dimensional,

continuous valued signal. A typical task in such a domain is to move the arm

to grab at a particular location, somewhere in space. The space may include

obstactles that should not be touched.

In this domain, spatial abstractions would study correspondences between

arm configurations. While exactly specifying equivalent states is difficult, one

could visualise several redundancies in the state space description. For exam-

ple, consider the final segment in the arm; imagine an axis drawn from the

previous component of the arm – positions on one side of the arm are equiva-

lent to positions on the other side. One could imagine two segments forming

a bend to also be equivalent. The complexity of analytically specifying these

symmetries is all the more a reason to have the agent to find these approximate

symmetries itself, rather than have them specified upfront.
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On the other hand, remembering the set of actions to restore the arm to a

particular configuration would correspond to a temporal abstraction; we have

abstracted the sequence of steps required to achieve the configuration with a

single one.

This example was introduced by Engel et al. (2006); its scale is somewhat

unprecedented in reinforcement learning, but it has sparked some interest, ap-

pearing later as a challenge for the RL competition in 2009. Even the best entry

in the competition had a very poor absolute score on the domain. If this is the

challenge posed by the control of a single arm, it begs the question; how can we

scale to control the remaining seven arms?

The main question we seek to address in this thesis is how an agent can use

spatial and temporal abstractions to learn how a task more quickly. Moreover,

we focus on techniques that do not require a complete and exact specification

of the target domain.

1.2 Learning Spatial Abstractions

MDP homomorphisms (Ravindran, 2004) provide an important theoretical frame-

work for transfer by describing when a policy can be transferred from one MDP

to another. While Soni and Singh (2006) describe the use of homomorphisms

to transfer option policies in continuous domains, they only consider variable

remappings, and do not study the general properties of continuous MDP ho-

momorphisms. In Chapter ??, we define continuous MDP homomorphisms,

and show that lifted policies share the same properties as in the discrete case.

We are primarily interested in finding homomorphisms, and in general, spa-

tial abstractions, in continuous spaces. Most techniques present in the transfer

learning community require hand-coded task mappings, or search a very lim-

ited set of transformations. Both Soni and Singh (2006) and Taylor et al. (2008)

search across various one-to-one variable mappings from the source to target

domains. Taylor et al. (2007) learns inter-task mappings by training a classi-

fier to predict the action taken given (s, s′, r). When the source and target state

3



spaces are not equivalent, they train a classifier for each variable subset, and

combine the outputs of these classifiers.

1.2.1 Our Contribution: Homomorphic Filters

In contrast, the technique we describe, homomorphic filtering, is applicable to

any differentiable set of homomorphisms. It operates by performing a stochas-

tic gradient descent in this set of homomorphisms. In particular, we study the

set of continuous affine homomorphisms, namely homomorphisms involving

rotation and translation of the state and action space. Variable remapping is a

trivial subset of the affine family. We evaluate our algorithm on the Cart Pole

domain, considering performance of the lifted policy on distorted versions of

the state space. We also study how these homomorphisms can bootstrap learn-

ing in the distorted state space.

1.3 Learning Temporal Abstractions

As mentioned earlier, we use the options framework to describe temporal ab-

stractions. An “option” is a special action that the agent can choose to take; once

the agent has selected an option, it follows a pre-specified behavioural policy

till some termination conditions for the option have been satisfied. The frame-

work decribes how learning algorithms should be suitably modified in order to

incorporate options.

Unfortunately, the framework does not describe how the options themselves

should be constructed, and neither is there a consensus in the community on the

same. The prevalent view is that subtasks should represent skills, i.e. partially

defined action policies that constitute a part of many reinforcement learning

problems (Thrun and Schwartz, 1995). For this reason, much of the existing

work centres around identifying ‘bottlenecks’, regions that the agent tends to

visit frequently (McGovern and Barto, 2001), either empirically as in (McGov-

ern and Barto, 2001), or, more recently, using graph theoretic methods like be-

tweenness centrality (Şimşek and Barto, 2008) or graph partitions (Menache
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et al., 2002). The intuition is that options that navigate an agent to such states

helps the agent move between strongly connected components, thus leading to

efficient exploration.

These option generation schemes suffer from two serious drawbacks; (i)

they either require complete knowledge of the MDP or follow a sample-heavy

approach of constructing a local model from trajectories, and (ii) there are, in

general, several options to bottlenecks that can be initiated by the agent. This

leads leading to a blowup in the decision space, often causing the agent to take

more time to learn the task as it filters through the unnecessary options.

If one considered these options as additional edges to the bottleneck states,

in the sense that a single decision is sufficient to transit the agent from a state, to

the bottleneck, the resultant state-interaction graph would now be “more” con-

nected. To highlight the importance of the connectivity of the state-interaction

graph, consider the Markov chain induced by a policy for an Markov decision

process. It is well known that the convergence rate of a Markov chain (mixing

time), is directly related to its conductance (Jerrum and Sinclair, 1988), and thus

its algebraic connectivity.

1.3.1 Our Contribution: Small World Options

Recognising the importance of connectivity, we apply concepts from Klein-

berg’s work on small world networks, to the context of problem solving with

autonomous agents. These graphs have been shown to have exceptionally

high algebraic connectivity, and thus fast Markov chain mixing times (Tahbaz-

Salehi and Jadbabaie, 2007). In a small-world network, each node has one non-

neighbouring edge, which connected to another node with a probability in-

versely proportional to the distance between them. With this simple construc-

tion, Kleinberg (2000) showed that an agent can discover a short path to any

destination using only local information like the coordinates of it’s immediate

neighbours. In contrast, other graph models with a small diameter only state

the existence of a short path, but do not guarantee that an agent would be able

to find such a path.
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In our context, we construct subtasks distributed according to the small

world distribution as follows; create an option that will take the agent from

a state s to another state s′ with a probability inversely proportional to the dis-

tance between s and s′. We prove that this set of subtasks enables the agent to

easily solve any task by using only a logarithmic number of options to reach a

state of maximal value (Section 5.2). As this scheme adds at most one additional

option per state, we do not explode the decision space for the agent.

Furthermore, in Section 5.3, we devise an algorithm that learns small world

options from the optimal policies learnt over a few tasks in the domain. Thus

not only are small world options effective to use, they are also simple to learn,

and do not require any global analysis of the MDP. Experiments on several

standard domains show that small-world options outperform bottleneck-based

methods, and that small world options require significantly fewer learning epochs

to be effective.

1.4 Organisation of Thesis

We present an overview to topics in reinforcement learning, homomorphisms,

and small world network in Chapter 2. The field of related work is reviewed in

Chapter 3. In Chapter 4, we describe the peculiarites of symmetries in continu-

ous domains and extend the definition of MDP homomorphisms to capture the

unique behaviour of continuous symmetries. Building on this theoretical foun-

dation, we describe our online algorithm to find continuous homomorphisms,

as well as the results we obtained. At this point, we shift focus to temporal ab-

stractions, and describe small world options in Chapter 5. Finally, we conclude,

discussing how spatio-temporal abstractions could provide a direction to solv-

ing complex problems such as the octopus domain, as well as future directions

in Chapter 6. We also describe some alternate approaches we attempted to find

continuous homomorphisms in Appendix A.

6



CHAPTER 2

Background

2.1 Reinforcement Learning

In reinforcement learning, the standard representation of an environment and

task instance is a Markov decision process (MDP). An MDP can be represented

as the tuple, 〈S,A, P,R, γ〉, where S and A are the state and action domains

which are known to the agent. P : S × A → X (S), where X (S) is the set of

all probability measures over S, describes the dynamics of the world through

state-action transition probabilities. R : S × A → R describes the task at hand

by ascribing rewards for state transitions. Both P and R are initially unknown

to the agent. Finally, γ ∈ [0, 1) is a parameter, called the ‘discount factor’, that

weighs the value of future rewards.

Figure 2.1: Agent-Environment Interface

In this setting, an agent in a state s ∈ S chooses an action a ∈ A, and moves

to a state s′ with probability P (s′|s, a), receiving a reward R (s, a) (Figure 2.1).

In the fully observable setting, the agent is aware of which state it is in, and the

objective of the agent is to find a policy π : S → X (A), i.e. a decision procedure

for selecting actions, that maximises the reward it accumulates in the long run,

R =
∑

i γ
iri. R is also called the return.

In the remainder of this section, we will describe the basic approach for

finding an optimal policy π for a discrete MDP, and its continuous variant.



2.1.1 Discrete Markov Decision Processes

In the discrete case, S and A are predictably finite sets of states and actions.

We define the value function V π : S → R = Eπ [
∑∞

t=0 γ
tRt|S0 = s] to be the

expected return from s, and Qπ : S × A→ R = Eπ [
∑∞

t=0 γ
tRt|S0 = s, A0 = a] to

be the expected return from s, after taking the action a. These can be written in

a recursive form,

V π (s) = max
a
R (s, a) + γ

∑
s′∈S

P (s′|s, a)V π (s′)

Qπ (s, a) = R (s, a) + γ
∑
s′∈S

P (s′|s, a)Qπ (s′, a′) .

Our objective can then be stated as finding a policy π with an optimal value

function, i.e. V ∗ (s) = supπ V
π (s) at all s ∈ S. The optimal value functions must

satisfy the Bellman optimality conditions,

V ∗ (s) = max
a
R (s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗ (s′)

Q∗ (s, a) = R (s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′

Q∗ (s′, a′) .

Given an optimalQ, it is possible to construct a greedy policy that is optimal;

π (s, a∗) = 1 when a∗ = argmaxaQ (s, a), and 0 otherwise. In principle, if the

agent knew the MDP, it could construct the optimal value function, and from

it an optimal policy. However, in the typical setting, the agent is only aware

of the state-action space, S and A, and must learn Q through exploration. The

Q-learning algorithm learns Q with a simple update for every step the agent

takes,

Q (s, a) = Q (s, a) + α
[
r + γmax

a′
Q (s′, a′)−Q (s, a)

]
,

where α ∈ [0, 1] is a parameter that controls the learning rate. It has been shown

that the Q-learning algorithm converges to the optimal value function in the

limit with fairly permissive assumptions.
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2.1.2 Continuous Markov Decision Processes

In continuous domains, defining S and A must be done with some care. To be-

gin with, S must be a measurable Euclidean space 1; let us denote the Lebesgue

measure 2 by λ. Consider the following (mild) regularity assumption proposed

in Andra et al. (2008),

Property 1. (MDP Regularity) S is a compact subset of the dS-dimensional Euclidean

space, A is a compact subset of [−A∞, A∞]dA . The random immediate rewards are

bounded by R̂max and R is uniformly bounded by Rmax : ‖r‖∞ ≤ Rmax.

We define the evaluation operator; T π : B (S × A)→ B(S × A),

T πQ (s, a) = R (s, a) + γ

∫
S,A

ds′ da′ P ( ds′|s, a) π (a′|s′)Q (s′, a′) .

We now define the analogue of the Q-value function recurrence relation, Qπ =

T πQπ. The fixed point of the Bellman operator T : B(S × A)→ B(S × A),

TQ (s, a) = R (s, a) + γ

∫
S

ds′ sup
a′∈A

P ( ds′|s, a)Q (s′, a′) ,

Q∗ = TQ∗ is then the optimal value function. By the regularity conditions

imposed in 1, V π and Qπ are both bounded by Rmax

1−γ .

In order to approach learning an optimal policy, we must estimate the cur-

rent value function, Q. One method is to use a function approximator. Another

popular scheme is the Fitted Q-iteration approach, wherein the Q function is

estimated by regressing on a finite trajectory collected using a stationary policy

πb. Let [St, At, Rt]1≤t≤N , be the dataset, and then Qk+1 can be got by,

Qk+1 = Regress

({[
(St, At) , Rt + γmax

a′∈A
Qk (Xt+1, a

′)

]
1≤t≤N−1

})
.

The regression itself can be solved using a variety of methods, including

neural networks and SVMs. A further discussion on suitable regression meth-

1Roughly, a space X is said to be measurable if a monotonic function µ : 2X → R that is
additive over finite union can be defined.

2The Lebesgue measure is a generalisation of length/area. It is possible to construct a
Lebesgue measure for any Euclidean space.
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ods, and a proof of convergence subject to niceness assumptions can be found

in Andra et al. (2008).

2.2 Spatial Abstractions: Homomorphisms

A homomorphism is defined in general to be a structure-preserving map. In

the context of MDPs, we want a correspondence between the two systems’ dy-

namics (P ) and tasks (R).

Definition 1. (MDP Homomorphism) An MDP homomorphisms h from an MDP

M = 〈S,A, P,R, γ〉 to and MDP M ′ = 〈S ′, A′, P ′, R′, γ〉 is a surjection for the state-

action spaces S × A→ S ′ × A′ such that,

P ′ (h (s, a) , s′) =
∑

s′∈f−1(s′)

P (s, a, s′) (2.1)

R′ (h (s, a)) = R (s, a) , (2.2)

where f is h restricted to S, i.e. f (s) = h (s, a) |S , and s′ is the image of s′ in M ′, i.e.

s′ = f (s′).

With minor abuse of notation, we assume P (h (s, a) , s′) , P (s, a, s′), where

h (s, a) = (s, a). Similarly, Q (h (s, a)) = Q (s, a). For brevity, we will write

M
h−→ M ′ if M ′ is the homomorphic image of M under h. We will also use

the notation (s, a) ∈ M to mean (s, a) ∈ S × A. Finally, two state-action pairs

(s, a) and (s′, a′) are equivalent if h (s, a) = h (s, a′) = (s, a). We write this as

(s, a) ∼ (s′, a′).

There can be other, less strict definitions of homomorphisms based on pre-

serving the value function, policy behaviour, etc. A survey of these definitions

can be found in Li et al. (2006b).

Given this definition, there are perhaps four serious questions that we wish

to answer when talking about homomorphisms,

1. (Transfer) Given a homomorphisms g between MDPs M and M ′, can one
use a policy learnt in M in M ′, and vice versa?

2. (Discovery) Given MDPs M and M ′, are they homomorphic?

10



3. (Minimisation) Given an MDP M , what is the smallest M ′ isomorphic to
M?

4. (Approximate Minimisation) Given an MDP M , and a class of homomor-
phisms H , what is the closest approximation M ′ ∈ H (M) of M?

All of these questions have been convincingly answered in the case of dis-

crete MDPs.

2.2.1 Transferring Policies in Discrete MDPs

The primary application of MDP homomorphisms is in the transfer of learning

in problem to another.

Definition 2. (Lifted Policy) Given M h−→ M ′, and a policy π′ in M ′ we can define a

lifted policy π = h−1 (π′) in M as follows,

π (s, a) ,
π′ (h (s, a))

|{a′ : h (s, a′) = h (s, a)}| . (2.3)

=
π′ (h (s, a))

|{a′ : (s, a′) ∼ (s, a)}| . (2.4)

Note that the denominator equally distributes the selection probability between

equivalent actions for a state.

A powerful result that we will later review shows that the lifted policy of an

optimal policy is itself optimal. This is a special case of the result that the value

of the lifted policy is equal through out M to the value of the original policy in

M ′, i.e. for all s, V π (s) = V π′ (s).

Note 1. (Partial Homomorphisms and Relativised Options)

The ability to ‘lift’ policies from one MDP to another can be exploited to solve sub-

problems in a reinforcement learning domain. Consider the grid-world shown in Fig-

ure 2.2(a) taken from Ravindran and Barto (2003); in this domain, there are several

rotated copies of the room shown in Figure 2.2(b). For each room in (a), let us define

a homomorphism mapping each cell within the room to those of the template room (b).

All states outside the room are mapped to the ‘sink’ state, denoted by the black square in

11



Figure 2.2: Relativised Options

(b). We can now define options Sutton et al. (1999) for each room, using the optimal

policy for (b), π, and the above homomorphisms; O = {hr−1π (a) | for each room r}.

2.3 Temporal Abstractions: The Options Framework

The options framework provides a temporal abstraction through subtasks. An

option 〈I, π, β〉 is described by an initiation set I ⊂ S, a policy π, and a termi-

nating condition β. An agent can exercise an option in any state s ∈ I, following

which, it will follow the policy π described by the option, until the terminating

condition β (s) is satisfied. The terminating condition β can be stochastic.

Several learning algorithms have been proposed for agents using options

Sutton et al. (1999); Barto and Mahadevan (2003). One simple such method that

we will use is MacroQ, a generalisation of the Q-learning algorithm described

above. The MacroQ algorithm updates the value function only after completion

of the option. If the option owas initiated in the state s, and continues for k steps

before terminating in s′, the corresponding Q function update will be,

Q (s, o) = Q (s, o) + α

[
r + γk max

o′∈A∪O
Q (s′, o′)−Q (s, o)

]
.

Different tasks in the same domain can be described by different R. Let R

be sampled from the family R. Our objective then is to find a set of options O

that reduces the expected learning time overR.

Example 1. To make the discussion more tangible, let us look at an example, the Taxi

domain, shown in Figure 2.3. The agent is a taxi navigating in this road-map. It must

12
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Figure 2.3: The Taxi Domain

pick up a passenger at one of the 4 pads, R, G, B or Y. Subsequently, it must carry the

passenger to a destination, which is also one of the above four pads. The states of the

taxi would then be a tuple containing the location of the passenger (in one of the four

pads, or within the taxi), the destination of the passenger, and location of the taxi in

the map. The actions the taxi can perform are moving up, down, left or right in the

map, as well as pick up or drop a passenger at a pad. Typical options for such a domain

would be an option that can be started anywhere, and has a policy that takes the taxi to

the one of the pads in the shortest possible manner. Such an option is generic, and does

not depend on where the passenger or destination are. The RL agent must then learn to

choose the right option when picking up the passenger.

2.4 Small World Networks

Pr ∝ 1
(2
√
2)2

Pr ∝ 1
(4
√
2)2

Figure 2.4: Kleinberg’s Small World Network
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In Kleinberg’s small-world network model (Figure 2.4), each node u is given

one ‘long-range’ edge to a node v, which was chosen with a probability Pr (u, v) ∝
‖u−v‖−r, where ‖u−v‖ denotes the least distance between nodes u and v in the

graph. On an r-dimensional lattice, Kr, the distance from any node u to a target

node t is bounded by ‖u − t‖, a quantity which is locally computable. When

given long-range edges distributed according to Pr, Kleinberg (2000) showed

that a greedy distributed algorithm GA that chooses a neighbour v closest to

t will reach t with an expected time O
(
log (|V |)2). This result is significant be-

cause the expected time for the algorithm on a graph with edges distributed

uniformly, i.e. without dependence on distance, is O (|V |2).

Theorem 3. Let f : V → R be a vertex function, and Mf be the global maxima of f .

Consider an algorithm, GA , that greedily chooses the neighbour with the highest value

of f . Suppose the algorithm is currently at u, it will choose N (u) = argminv ‖f (v)−
f (Mf ) ‖.

If G (V,E) is r-dimensional lattice, and contains a long distance edge distributed

according to Pr : p (u, v) ∝ ‖u − v‖−r, then GA takes O
(
(log |V |)2) steps to reach

Mf .

Proof. We defer the proof of this theorem to Section 5.2, where we prove a gen-

eralisation of this theorem (Theorem 9).
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CHAPTER 3

Related Work

In this chapter we will review existing methods for option-discovery and trans-

fer learning.

3.1 MDP Minimisation and Homomorphism Discov-

ery in Discrete MDPs

In order to answer the minimisation question, Narayanamurthy and Ravin-

dran reduced the MDP homomorphism query to a graph automorphism prob-

lem in Narayanamurthy and Ravindran (2008) by constructing an equivalent

weighted digraph from an MDP M〈S,A, P,R〉.

We briefly describe the reduction: Construct a graph GM , with S as nodes.

For each node s, add an edge to the node s′ if there is some action a that takes

the agent from s to s′. Each edge is weighted with the vectors, 〈pa1 , · · · , pa|A|〉
and 〈ra1 , · · · , ra|A|〉, where pai = P (s, ai, s

′), and rai = R (s, ai, s
′). We could also

view this as a construction of two graphs, one for P , and the other for R; the

graph isomorphisms we are looking for belong to the common subset.

There are cases for which using the symmetry group may not suffice to cap-

ture the symmetries present; Section 4.1.1 of Ravindran (2004) presents one such

example. This method can not be extended to continuous domains easily, as the

number of states is no longer countable, and hence a reduction to a graph iso-

morphism problem is not possible.

3.2 Approximate Homomorphisms for Discrete MDPs

In practice, exact symmetries are rarely found. In such situations, approximate

homomorphisms may be more suitable. The most common approach is to ag-



gregate states within a certain error bound ε of the transition and reward func-

tions; this is the approach followed in Ravindran and Barto (2004) and Taylor

et al. (2009). Both papers also present a bound on the approximation loss, which

is linearly dependent on the maximum error in expected reward (R) and tran-

sition probability.

Another approach to approximate homomorphisms, proposed by Sorg and

Singh (2009), is to probabilistically map states onto the homomorphic image

through “soft homomorphisms”; i.e. h : S → X (S ′), such that,

∑
s∈S′

P ′ (s, a, s′)h (s|s) =
∑
s′∈S

P (s, a, s′)h (s′|s′)
∑
s∈S′

R′ (s, a)h (s|s) = R (s, a) .

Finding these soft homomorphisms can be shown to be a quadratic pro-

gram,

∀aHP ′a = P aH

∀aHR′a = Ra

H1|S′| = 1|S|

Hij ≥ 0.

where,

H : |S| × |S ′| = h (s′|s)

P a : |S| × |S| = P (s′|s, a)

Ra : |S| × 1 = R (s, a)

P ′a : |S ′| × |S ′| = P (s′|s, a)

R′a : |S ′| × 1 = R (s, a) .

Sorg and Singh (2009) further show how soft homomorphisms can be used

to map learning to a scaled up version of the state space, as well as map a

continuous state space to a discrete one. One of the drawbacks of this approach
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however, is the lack of state dependent action recoding.

Of the two approaches, using soft homomorphisms seems more easily appli-

cable in the continuous domain. In fact, we attempted to approach the problem

in this fashion, however we found the optimisation problem to be intractable

(Section A.2).

3.3 Option Discovery

One of the first option discovery schemes was by McGovern and Barto (2001),

who identify states that are visited frequently through an empirical count. The

problem is cast as a multiple-instance learning problem, where an option or

“concept” that explains the most number of successful trajectories is chosen.

Our approach of constructing options from multiple trajectories is similar to

McGovern and Barto (2001)’s method of using several trajectories to find the

minimal explanation.

Menache et al. (2002) approaches the option discovery also through the angle

of finding bottlenecks. They make the observations that bottleneck states join

well connected regions of the state-space graph, and use a graph cut algorithm

to find bottlenecks, which are nodes in the cut set.

The state-of-the-art option discovery technique uses the betweenness scores

of states as a measure of importance (Şimşek and Barto, 2008). This is an intu-

itive measure, since graph betweenness measures the proportion of paths that

go through a particular node. In a domain like Taxi, the pickup and drop ac-

tions are states with high betweenness values. In navigational domains likes

Rooms, doorways are high betweenness centers. Şimşek and Barto (2008) also

show how a locally constructed model of the MDP can be used to compute

betweenness scores.
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CHAPTER 4

Searching for Homomorphisms

In this chapter, we explore spatial homomorphisms in continuous domains.

We begin by describing the challenges of such a definition (Section 4.1), and

describe a extension to existing MDP homomorphism definitions that tackles

them (Section 4.2). As an aside, we detail an interesting family of continuous

homomorphisms, namely continuous affine homomorphisms in Section 4.2.1.

We develop an online algorithm to find homomorphisms from this family in

Section 4.3, and evaluate this algorithm in Section 4.4.

4.1 Continuous Homomorphisms

An important property of symmetries in continuous domains is that they may

reduce the dimensionality of the domain; the type of symmetries present in

discrete domains can only “fold” the state space in finitely many ways. To

motivate this distinction, consider the following examples,

θθ

(a) Discrete Symmetry (b) Continuous Symmetry

4.1.1 Inverted Pendulum

In this example, the agent is aware of a single continuous variable, the angular

displacement of the pole from the vertical, and has either two discrete actions to



move to the left or to the right with a certain acceleration/impulse, or a continu-

ous range of acceleration/impulse (Figure 4.1a). There is an obvious symmetry

of reflection about the vertical. This is an example of a finite symmetry group.

The dimensionality of the homomorphic space remains unchanged.

4.1.2 Reach the Center

Imagine a circular disc-world wherein an agent must navigate to the center of

the disc. The only relevant variable here is the radial distance, and all points

along a circle with a particular radius are homomorphically equivalent (Fig-

ure 4.1b). This is an example of an infinite symmetry group. The dimensionality

of the homomorphic space has reduced to 1 from 2.

In general, the dimensionality of the homomorphic image reduces by the

“height” of the symmetry group; this is a standard result from algebra.

4.2 Well-Definedness of Continuous MDPs

In order to capture continuous symmetries in our framework, we need a defini-

tion of continuous MDP homomorphisms that captures both finite and infinite

pre-images. This problem is resolved if, instead of maps between points, we

considered maps between closed topological sets. The circle described in the pre-

vious example, while composed of an infinite number of points is still a closed

set, and so is its image, a single point. Topologically speaking, a map that takes

closed sets to closed sets is continuous. The coincidence that homomorphisms

in continuous domains must themselves be continuous allows us to unambigu-

ously use the term “continuous homomorphisms” in the sequel.

Definition 4. (Continuous MDP Homomorphism) An continuous MDP homomor-

phisms h from a continuous MDP M = 〈S,A, P,R, γ〉 to and a continuous MDP

M ′ = 〈S ′, A′, P ′, R′, γ〉 is a continuous surjection S × A→ S ′ × A′ such that,

P ′ (h (s, a) , s′) =

∫
f−1(s′)

ds′ P (s, a, s′) (4.1)

R′ (h (s, a)) = R (s, a) , (4.2)
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where f is h restricted to S, i.e. f (s) = h (s, a) |S , and s′ is the image of s′ in M ′, i.e.

s′ = f (s′).

The continuity condition also ensures that f−1 (s′) is a well defined, measur-

able set. Though f−1 (s′) may be a finite set, we slightly abuse notation and use∫
f−1(s′)

uniformly; the integral must be replaced by a summation in case f−1 (s′)

is finite.

For the remainder of this section, unless specified otherwise, we will assume

all MDPs and homomorphisms are continuous. The lifted policy of a continu-

ous MDP is defined as follows.

Definition 5. (Continuous Lifted Policy) Given M h−→ M ′, and a policy π′ in M ′ we

can define a lifted policy π = h−1 (π′) in M as follows,

π (s, a) ,
π′ (h (s, a))∫
h−1
s (a)

da
. (4.3)

where h−1
s (a) is set of actions equivalent to a in the state s, i.e. {a | h (s, a) = (s, a)}.

We will now prove the value equivalence between an continuous MDP and

its homomorphic image and show that the above definitions are sufficient for

this purpose.

Lemma 6. Let M h−→ M ′. Let π′ be any policy in M ′, and π be its lifted policy in M ′.

Define V π (s) =
∫
A

da π (s, a)Qπ (s, a). If Qπ (s, a) = Qπ′ (h (s, a)), then V π (s) =

V π′ (s).

Proof. This follows directly from the definition of the lifted policy π.

V π (s) =

∫
A

da π (s, a)Qπ (s, a)

=

∫
A′

da

∫
h−1
s (a)

da π (s, a)Qπ (s, a)

=

∫
A′

da

∫
h−1
s (a)

da
π′ (s, a)∫
h−1
s (a)

da
Qπ′ (s, a)

=

∫
h−1
s (a)

π′ (s, a)Qπ′ (s, a)

= V π′ (s) .
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Theorem 7. (Continuous Value Equivalence) Let M h−→ M ′. Let π′ be any policy in

M ′, and π be its lifted policy in M ′. For any (s, a) ∈ S×A, Qπ (s, a) = Qπ′ (h (s, a)).

Proof. Consider the recursive definition of the m-step discounted action value

function,

Qπ
m (s, a) = R (s, a) + γ

∫
S

ds′ P (s, a, s′)

∫
A

da′ π (s′, a′)Qπ
m−1 (s′, a′) ,

with Qπ
−1 (s, a) = 0 for any (s, a) ∈M . We will also define an m-step discounted

value function V π
m (s) =

∫
A

da π (s, a)Qπ
m (s, a) . We can rewrite the previous

equation as,

Qπ
m (s, a) = R (s, a) + γ

∫
S

ds′ P (s, a, s′)V π
m−1 (s′) .

For the base case, consider the case when m = 0. Then, Qπ
0 (s, a) = R (s, a) =

R′ (h (s, a)) = Qπ′
0 (h (s, a)). Assuming Qπ

j (s, a) = Qπ′
j (h (s, a)) for all (s, a) ∈ M

and all j < m, we must show that Qπ
m (s, a) = Qπ′

m (h (s, a)).

Qπ
m (s, a) = R (s, a) + γ

∫
S

ds′ P (s, a, s′)V π
m−1 (s′)

= R (s, a) + γ

∫
S′

ds′
(∫

f−1(s′)

ds′ P (s, a, s′)

)
V π′

m−1 (s′)

= R′ (h (s, a)) + γ

∫
S′

ds′ P ′ (h (s, a) , s′)V π′

m−1 (s′)

= Qπ′

m (h (s, a)) .

Given thatQ∗ (s, a) = limm→∞Qm (s, a), we haveQ∗ (s, a) = Q∗ (h (s, a)).

4.2.1 Continuous Affine Homomorphisms

An interesting family of homomorphisms that we will consider in detail are

that of continuous affine homomorphisms. These homomorphisms relate two

spaces through a combination of rotation and translation. A continuous affine

homomorphism is parameterised by A, an orthogonal matrix corresponding to
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rotation, and b a vector corresponding to translation. In addition, we can project

the rotated vector to a smaller state space with the rectangular identity matrix,

Im,n, where m and n are the dimensions of M ′ (the image) and M respectively.

Thus, h (x) = Im,nAx+ b.

Example 2. (Expressive Power of Continuous Affine Homomorphisms)

0.5

0.3

-0.5

0.3

Figure 4.1: Cart Pole

Let us study the capabilities of the continuous affine homomorphism family, with

the Cart Pole task as an example (Figure 4.1). In this task, the agent must balance a pole

on a cart without moving the cart out of the boundaries; the only action the agent can

perform is to push the cart forward or backward with some force. The state variables are

the x position of the agent, the angular displacement from the vertical, and the linear

and angular velocities of the cart and pole respectively.

In a bounded domain, there is a single exact automorphism; a reflection of all the

state features about the centre of the track. This instance is trivially captured by the

continuous affine family, A = −I and b = 0. In an unbounded domain, however, the

whole system is translation-invariant, i.e. the x position does not matter. In such a case,

A could zero out the contribution of x, and b translate the system to any coordinate.

This homomorphism is a reasonable approximation even in bounded domains.

An interesting reduction we could study in this domain would be to project the an-

gular state space coordinates, and lift a policy from an inverted pendulum. A is simply

the permutation matrix that shifts the angular components to the first two features.

4.3 Homomorphic Filters

A number of factors make searching for exact homomorphisms impractical.

Rarely is the environment model exactly known, particularly in some closed
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form that it can be exploited. Furthermore, exact homomorphisms are ex-

tremely sensitive to noise, thus rendering them inapplicable to any learnt mod-

els. Given these conditions, it is more prudent to search for approximate ho-

momorphisms. In this section, we describe an online algorithm to find homo-

morphisms from the current environment, M , to an environment the agent has

encountered before, M ′. We assume that we have a model of M ′, but not of M .

In principle, we would like to find a homomorphism that minimises the

expected difference between x′ ∼ PM (x, a) and x′ ∼ PM ′ (h (x, a)), as well as

RM (x, a) and RM ′ (h (x, a)). To this end, we propose the following objective

function,

C (h) =

∫
S×A

dx da C (h, x, a) (4.4)

C (h, x, a) =
1

2
E
[
(x′ − h (x′))

2
]

+
1

2
E
[
(RM ′ (x)−RM (x))2] .

Without a model for M , the above expectations can not be evaluated, let

alone minimised. However, we can use samples of x, a, x′ and r collected by

the agent’s interaction with the world to perform stochastic gradient descent,

ht+1 ← ht − α〈∇hC (h, x, a) ,H〉

∇hC =
1

2
∇h

[
tr (K (h (x))) + (m (h (x))− h (x′))

2
+ (R (h (x′))− r)2

]
∇hC =

1

2
∇ tr (K (h (x))) · ∇hh (x) + (m (h (x))− h (x′)) (∇m (h (x)) · ∇hh (x)−∇hh (x′))

+ (R (h (x′))− r)∇R (h (x′)) · ∇hh (x′) .

m and K are the mean and co-variance of M ′. Note that we project the updates

ontoH, 〈∇hC (h, x, a) ,H〉.

Finally, as C (h) is in general a complex non-convex function, we perform

the stochastic gradient descent simultaneously on a number of starting points,

or particles. The algorithm is summarised in Algorithm 1. The Q-value at any

point of the homomorphic filter is computed as an expectation over each parti-

cle, with probabilities proportional to exp

(
−C(h̃j ,x,a)

τ

)
.
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Algorithm 1: Homomorphic Filtering

1 Initialise M particles h(i)
0 randomly fromH

2 while not converged do
3 foreach particle i do h̃it+1 ← hit + α〈∇hC,H〉
4 foreach particle i do hit+1 ∼ h̃t+1 with probability ∝ exp

(
−C(h̃j ,x,a)

τ

)

4.3.1 Continuous Affine Homomorphisms

One possible choice for H is the set of affine transformations between the state

spaces, i.e. h (x) = Im,nAx + b, where m and n are dimensions of M ′ and M re-

spectively, A is an arbitrary orthogonal matrix, and b is an arbitrary translation.

Below, we derive the necessary update equations for this family of homomor-

phisms,

∂

∂Aij
h (x) = Im,n1ixj

∂

∂A
f (h (x)) = ∇f (h (x)) Im,nx

T

∂

∂bi
h (x) = 1i

∂

∂b
f (h (x)) = ∇f (h (x)) .

∂

∂A
C =

1

2
∇ tr (K (h (x)))xT +

∑
i

(mi (h (x))− h (x′))
(
∇mi (h (x)) · ITm,nxT − 1 · ITm,nx′T

)
+ (R (h (x′))− r)∇R (h (x′)) Im,nx

′T

∂

∂b
C =

∑
i

(
1

2
∇Ki (h (x)) + (mi (h (x))− h (x′)) (∇mi (h (x))− 1)

)
+ (R (h (x′))− r)∇R (h (x′)) .

The new A can be projected onto the set of orthogonal matrices, by finding

the nearest orthogonal matrix, A
(
ATA

)− 1
2 .

4.4 Experimental Results

We evaluated our algorithm on the Cart Pole domain. The domain describes an

agent that must balance a pole on a cart by applying a linear force to the cart.

The domain has four state variables, θ, the angular displacement of the pole
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from the vertical, x the linear displacement of the cart from the center, and their

derivatives, θ̇ and ẋ. The linear force the agent can apply is discretised into 4

actions.

We used fitted Q-iteration with support vector regression through out the

experiments to learn the value function. We initially chose Gaussian process

regression to learn the domain models because it provided a covariance func-

tion. However, despite the uniform noise in our experiments, and hence in-

dependence from coordinates, the learnt models did not accurately predict the

variance, and led to greater variability in performance. We decided to omit the

contribution of variance to the gradient descent updates, and used the models

learnt using support vector regression for the remainder of the experiments for

efficiency reasons.

The Cart Pole domain has a single exact homomorphism which is a com-

plete reflection of the coordinates, and reversal of the forces applied. Since the

action space is discrete, we also added an action permutation to each particle.

Our algorithm found homomorphisms which a combination of reflections of

the angular components, and linear displacements of cart along the track, both

of which are intuitive. When the track on which the cart moves is bounded, any

two positions along the track, except for mirror reflections, are not equivalent.

However, the difference in their values is reduces as the cart moves away from

the wall; in limiting case, when the track is unbounded, the x displacement

indeed does not matter.

l, mp, mc Using Original π Using HF π New Agent

0.5, 0.1, 1.0 -11.003 1.612 2.079

Table 4.1: Lifted Policy on Perturbed Domain (Return after 1, 600 epochs)

We perturbed the domain by changing some of its parameters (e.g. length

of the pole, masses, etc.), as well as by rotating the state space coordinates, and

observed the performance of the algorithm. We present the return accumu-

lated by the agent after 1, 600 epochs observations in Table 4.1; in general, the

lifted policy of the homomorphic filter was competitive to a trained agent on

the perturbed domain, considerably better than the trained agent in the original

domain.
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Figure 4.2: Bootstrapping Learning in a Perturbed Domain

We also evaluated the benefit of using the homomorphic filter to bootstrap

the agent using a slight variant of multiple model reinforcement learning (Doya

et al., 2002). Initially, the agent relies more on the policy of the homomorphic

filter, but as the agent’s value function estimate improves, it gradually begins

to use its value function more (Figure 4.2). We compared the performance of

an agent learning without any other model (None), with the policy learnt in the

original task (Original π), and the policy recommended by the homomorphic

filter (HF π). The agent using the homomorphic filter significantly outperforms

the other two agents. Note that the agent using the original policy without any

homomorphisms actually negatively effects the learning of the agent.
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CHAPTER 5

Small World Options

In this chapter, we describe how an MDP can be viewed as a graph, and how

Kleinberg’s small-world model can be adapted to this setting (Section 5.1). We

then prove that small world options indeed guarantee a logarithmic bound

on the number of decisions taken by the agent (Section 5.2). In line with our

general theme of abstraction learning schemes relying only information readily

available to the agent, we describe an efficient algorithm to learn small world

options completely through trajectories taken by the agent (Section 5.3). Finally,

we evaluate the small world options, comparing the options against another

state of the art technique in Section 5.4.

5.1 Graph View of MDPs

Figure 5.1: The State Space Graph for Taxi

It is easy to construct a graph GM out of the state-space described by an

MDP. The states S become the nodes of the graph, and actions A become the

edges, with the transition probabilities as weights. Options can be viewed as



paths along the graph. The Taxi domain defined earlier (Example 1) translates

to the graph shown in Figure 5.1.

We draw a parallel to the network structure in Kleinberg’s small-world net-

work model (Figure 2.4), by adding a single ‘path option’ from each state s to

another state s′, where s′ is chosen with probability Pr (s, s′) ∝ ‖s − s′‖−r. A

path option op (s, s′) is an option with I = {s}, β = {s′}, and an optimal policy

to reach s′ for π. Intuitively, it is an option that takes the agent from s to s′.

In practice, we may generate path options for only a subset of |S|. Note that

while this results in O (|S|) options, only one additional option is available in

any state, and thus the decision-space for the agent is not significantly larger.

5.2 Small World Structure in MDPs

Consider an MDP MKr with states connected in a r-dimensional lattice, and

noisy navigational actions between states. We claim that by using robust path

options distributed according to Pr, an ε-greedy agent can reach a state of max-

imal value using O
(
log (|S|)2) options, using the value function V as a local

property of the state.

Definition 8. A robust path option o (u, v), where u, v ∈ S is an option that takes

the agent from u to v ‘robustly’, in the sense that in each epoch, the agent moves closer

to v with a probability 1− ε > 1
2
. 1. Note that this ε includes any environmental effects

as well.

In order to handle the ε-greedy nature of the algorithm, as well as the approximate-

ness in the distance, we will need to extend Kleinberg’s theorem (Theorem 3).

Theorem 9. Let f : V → R be a function embedded on the graph G (V,E), such that,

κ1‖u − v‖ − c1 ≤ ‖f (u) − f (v) ‖ ≤ κ2‖u − v‖ − c2, where 0 ≤ κ1 ≤ κ2, and

0 ≤ c2 ≤ c1
2

. Let Mf be the global maxima of f . Let GAε be an ε-greedy algorithm

with respect to f , i.e. an algorithm which chooses with probability 1 − ε to transit to

the neighbouring state closest to Mf , i.e. N (u) = argminv ‖f (v)− f (Mf ) ‖.
1This condition is equivalent to saying that the option takes the agent from u to v in finite

time, and hence is not particularly strong.
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If G (V,E) is r-dimensional lattice, and contains a long distance edge distributed

according to Pr : p (u, v) ∝ ‖u − v‖−r, then GAε takes O
(
(log |V |)2) steps to reach

Mf .

Proof. This result is a simple extension of Kleinberg’s result in Kleinberg (2000),

and follows the proof presented there, albeit with the somewhat cleaner nota-

tion and formalism of Martel and Nguyen (2004). We begin by defining the

necessary formalism to present the proof.

Definition 10. Let us define Bl (u) to be the set of nodes contained within a “ball” of

radius l centered at u, i.e. Bl (u) = {v | ‖u− v‖ < l}, and bl (u) to be the set of nodes

on its surface, i.e. bl (u) = {v | ‖u− v‖ = l}.

Given a function f : V → R embedded on G (V,E), we analogously define Bf
l (u) =

{v | |f (u)− f (v) | < l}. For notational convenience, we take Bf
l to be Bf

l (Mf ).

The inverse normalised coefficient for p (u, v) is,

cu =
∑
v 6=u

‖u− v‖−r

=

r(n−1)∑
j=1

bj (u) j−r.

It can easily be shown that the bl (u) = Θ
(
lk−1

)
. Thus, cu reduces to a har-

monic sum, and is hence equal to Θ (log n). Thus, p (u, v) = ‖u−v‖−rΘ (log n)−1.

We are now ready to prove that GAε takes O
(
(log |V |)2) decisions. The

essence of the proof is summarised in Figure 5.2. Let a node u be in phase j

when u ∈ Bf
2j+1 \Bf

2j . The probability that phase j will end this step is equal

to the probability that N (u) ∈ Bf
2j .

The size of Bf
2j is at least |B 2j+c2

κ2

| = Θ
(

2j+c2
κ2

)
. The distance between u and

a node in Bf
2j is at most 2j+1+c1

κ1
+ 2j+c2

κ2
< 2

(
2j+1+c2

κ2

)
. The probability of a link

between these two nodes is at least
(

2j+2+2c1
κ1

)−r
Θ (log n)−1. Thus,
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G

Θ((21)2) nodes

Θ((22)2) nodes

Θ((23)2) nodes

Θ((2j)r) nodes

Pr ≈ (2j)r×(2j+2)−r

Θ(log n)

Figure 5.2: Exponential Neighbourhoods

P
(
u,Bf

2j
)
≥ (1− ε)

Θ (log n)

(
2j + c2

κ2

)r
×
(

2j+2 + 2c1

κ1

)−r
≥ (1− ε)

Θ (log n)
×
(
κ1

4κ2

)r
×
(

1 + c2
2j

1 + c1
2×2j

)r

≥ (1− ε)
Θ (log n)

×
(
κ1

4κ2

)r
×
(

1 + c2

1 + c1
2

)r
.

Let number of decisions required to leave phase j be Xj . Then,

E [Xj] ≤
∞∑
i=0

(
1− P

(
u,Bf

2j
))i

≤ 1

P (u,Bf
2j)

≤ Θ (log n)
1

(1− ε)

(
4κ2

κ1

)r (1 + c1
2

1 + c2

)r
≤ Θ (log n) .

Thus, it takes at mostO (log n) decisions to leave phase j. By construction, there
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are at most log n phases, and thus at most O
(
(log n)2) decisions.

All that remains is to bound the value function, V, in terms of the graph

distance to the value maxima. We show this in the following lemma.

Lemma 11. Let o (u, v) be the preferred option in state u, and let ‖u−v‖V = | log V (v)−
log V (u) |. Then,

k1‖u− v‖ − c1 ≤ ‖u− v‖V ≤ k2‖u− v‖,

where k1 = log 1
γ

, k2 = log 1
(1−ε)γ , and c1 = log 1

1−γ .

Proof. From the Bellman optimality condition, we get the value of o (u, v) to be,

Q (u, o (u, v)) = El

[
γl V (v) +

l∑
i=1

γi−1ri

]
,

where l is the length of the option, and ri is the reward obtained in the i-th step

of following the option.

If o(u,v) is the preferred option in state u, then V (u) = Q (u, o (u, v)). Using

the property that 0 ≤ ri ≤ 1,

El
[
γl V (v)

]
≤ V (u) ≤ El

[
γl V (v) +

l∑
i=1

γi−1

]
El
[
γl
]

V (v) ≤ V (u) ≤ El
[
γl
]

V (v) +
1

1− γ . (5.1)

El is an expectation over the length of the option. Using the property that

o (u, v) is robust, we move closer to v with probability ε̄ = 1−ε; this is exactly the

setting of the well-studied gambler’s ruin problem, where the gambler begins

with a budget of ‖u − v‖, and wins with a probability of ε. Using a standard

result from FellerFeller (1968), with m = ‖u− v‖, we have,

El
[
xl
]

=
∞∑
l=0

P (L = l)xl =
1

λm1 (x) + λm2 (x)
,

31



where λ1 (x) = 1+
√

1−4εε̄x2

2ε̄x
, and λ2 (x) = 1−

√
1−4ε̄εx2

2ε̄x
. When x ≤ 1,

1

(λ1 (x) + λ2 (x))m
≤ El

[
xl
]
≤

∞∑
l=m

P (L = l)xl

1(
2

2ε̄x

)m ≤ El
[
xl
]
≤

∞∑
l=m

P (L = l)xm

(ε̄x)m ≤ El
[
xl
]
≤ xm.

Substituting x = γ and m = ‖u− v‖ into Equation (5.1), we get,

El
[
γl
]

V (v) ≤ V (u) ≤ El
[
γl
]

V (v) +
1

1− γ
(ε̄γ)‖u−v‖V (v) ≤ V (u) ≤ γ‖u−v‖V (v) +

1

1− γ
‖u− v‖ log

1

γ
− log

1

1− γ ≤ ‖u− v‖V ≤ ‖u− v‖ log
1

ε̄γ
.

Thus, an ε-greedy agent acting with respect to its value function can reach

the maxima of the value function using justO
(
(log |S|)2) decisions. Though this

result strictly applies only to the lattice setting, we observe that many MDPs are

composed of lattice-like regions of local connectivity connected via bottleneck

states. The presence of such bottleneck states would only increase the expected

time by a constant factor.

5.3 Efficiently Constructing Small World Options

In Section 5.2, we remarked that we needed O (|S|) options. In order to be

practical, we require an algorithm to efficiently generate these options within a

budget of training epochs. The proof of Theorem 9 provides us with a crucial

insight – our options only need bring the agent into an exponentially smaller

neighbourhood of the maximal value state. This suggests that cheaply generated

options may still be acceptable.

The algorithm (Algorithm 2) we propose takes a given MDP M , and trains
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an agent to learn T different tasks (i.e. different R) on it, evenly dividing the

epoch budget amongst them. With each learned task, we certainly will have a

good policy for path options from any state to the state of maximal value, Mv.

However, we observe that will also have a good policy for path options from u

to v is the path is ‘along the gradient’ of Q, i.e. when V (u) < V (v) < V (Mv).

Observing that V (s) ≈ argmaxvQ (s, π (s)), we detail the algorithm to construct

many options options from a single Q-value function in Algorithm 3.

Algorithm 2: Small World Options from Experience
input : M ,R, r, n, epochs, T

1 O ← ∅
2 for i← 0 to T do
3 R ∼ R
4 Q← Solve M with R using epochs

T
epochs

5 O′ ← QOptions( Q, r, n
T

)
6 O ← O ∪O′

7 return A random subset of n options from O

Algorithm 3: QOptions: Options from a Q-Value Function
input : Q, r, n

1 O ← ∅
2 π ← greedy policy from Q

3 for s in S do

4 Choose an s′ according to Pr

5 if Q (s′, π (s′)) > Q (s, π (s)) then

6 O ← O ∪ 〈{s}, π, {s′} ∪ {t | Q (s′, π (s′)) < Q (t, π (t))}〉

7 return A random subset of n options from O

We note here except for sampling s′ from Pr, we do not require any knowl-

edge of the MDP, nor do we need to construct a local model of the same. In fact,

s′ can be sampled approximately using the expected path length instead of the

graph distance in Pr. As the expected path length E [l] is only a constant factor

greater than l ( l
ε̄
), Lemma 11 continues to hold.
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5.4 Experimental Results

We trained MacroQ learning agents on several standard domains, and mea-

sured the cumulative return obtained using the following option generation

schemes:

• None: No options were used.

• Random: Options were generated by randomly connecting two nodes in
the domain (this is equivalent to P0).

• Betweenness: As a representative of bottleneck-based schemes, options
were generated to take any node to a local maxima of betweenness cen-
trality, as described in Şimşek and Barto (2008).

• Small World: Options were generated randomly connecting two nodes of
the domain using an inverse square law, as described in Section 5.2.

Each experiment, unless mentioned otherwise, was run for 10 randomly

generated tasks in the domain; each task ran for 40, 000 epochs, and was av-

eraged over an ensemble of 20 agents.

5.4.1 Optimal Options

The agents were run on the following three domains using the algorithm sketched

in Section 5.2:

• Arbitrary Navigation: The agent must reach an arbitrary goal state in an
obstacle-free x× y grid-world.

• Rooms: The agent must navigate a floor plan with 4 rooms to reach an
arbitrary goal state.

• Taxi: This is the domain described in Example 1.

Optimal policies were given to the options generated according to the schemes

described above.

The results of these experiments are summarised in Table Table 5.1. Small

world options perform significantly better than the other schemes in navigation-

oriented tasks like Rooms or Arbitrary Navigation. In the Taxi domain, op-

tions generated by the betweenness scheme outperform the small world op-
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Arbt. Navi Rooms Taxi

None -31.82 -1.27 -16.90
Random -31.23 -10.76 -18.83

Betw. -18.28 -8.94 80.48
Sm-W -14.24 [r = 4] 8.54[r = 2] 0.66 [r = 0.75]

Table 5.1: Cumulative Return

tions. This is expected because the goal states in this domain lie at betweenness

maxima.

S

G

(a) Rooms: Options learnt (b) Rooms: Cumulative Return with 200 options

Some of the small world options preferred in Rooms domain are shown

in Figure 5.3a. The graph shows several examples of options that compose to-

gether to arrive near the goal state. We have also plotted the learning behaviour

in Figure 5.3b. The option scheme “Betweenness + SW” combines options to be-

tweenness maxima with small world options. Expectedly, it significantly out-

performs all other schemes. The options to betweenness maxima help take the

agent between strongly connected regions, while the small world options help

the agent navigate within the strongly connected region.

5.4.2 Sensitivity of r

Figure 5.3 plots r versus the cumulative return on the Rooms domain. We do

not yet have a clear understanding of how the exponent r should be chosen. The

performance of the agent without options after 20, 000 epochs is also plotted for

reference. There is a range of r (≈ 0.75 to 1.5) with good performance, after
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Figure 5.3: Rooms: r vs Cumulative Return

which the performance steadily drops. This behaviour is easily explained; as

the exponent goes up, the small world options generated are very short, and do

not help the agent get nearer to the maximal value state. The optimal range of

r is slightly counter-intuitive because the Rooms domain is a two dimensional

lattice with some edges removed. As a consequence of the reduced connectivity,

and perhaps due to stochastic factors, longer range options are preferred.

Figure 5.4: Rooms: Options Learnt on a Budget
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5.4.3 Options Learnt on a Budget

In Section 5.3, we described an algorithm to construct small world options ef-

ficiently when given a limited number of learning epochs. We compared the

performance of these options with betweenness options learnt with the same

total number of epochs, and have plotted our results in Figure 5.4. Despite

using many more options, the small world options thus created significantly

outperform betweenness options learnt with the same budget, and are even

comparable to the optimal betweenness options.
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CHAPTER 6

Conclusions and Future Directions

6.1 Homomorphic Filters

We described an online algorithm to learn MDP homomorphisms in contin-

uous state spaces through gradient descent in the family of homomorphisms,

and evaluated the same using the family of affine homomorphisms. This family

of homomorphisms subsumes many existing selection algorithms which only

consider variable remappings. When run on the Cart Pole domain, the algo-

rithm finds intuitively obvious approximate homomorphisms which an exact

homomorphism solver could not find. The lifted policy in perturbed domains

performs comparably to an agent trained to learn in that domain. We also used

the lifted policy to bootstrap an agent in the perturbed domain, and observed

that the agent performed better than its counterpart without the lifted policy.

We believe the homomorphic filter is a novel approach to finding continu-

ous homomorphisms, backed by a solid theoretical foundation in MDP homo-

morphisms. Of particular interest to the authors would be to study if complex

tasks could be solved given models of simpler subtasks. For example, could we

learn how to behave in the Cart Pole domain faster if we were given a model of

an inverted pendulum. This approach motivates the use of self-paced learning

in reinforcement learning. Though it is straightforward to extend the current

work to continuous action spaces, it remains to be seen how well homomor-

phic filtering performs in such domains. Finally, though we have restricted our-

selves to the class of affine homomorphisms, the method described is general

enough to capture other differentiable families, for example regression trees.

Studying alternative homomorphism classes is planned future work.



6.2 Small World Options

We have devised a new scheme to generate options based on small world net-

work model. The options generated satisfy an intuitive criteria, that the sub-

tasks learnt should be easily composed to solve any other task. The options

greatly improve the connectivity properties of the domain, without leading to

a state space blow up.

Experiments run on standard domains show significantly faster learning

rates using small world options. At the same time, we have shown that learn-

ing small world options can be cheaper than learning bottleneck options, using

a natural algorithm that extracts options from a handful of tasks it has solved.

Another advantage of the scheme is that is does not require a model of the MDP.

As future work, we would like to characterise what the exponent r should

be in a general domain. There are some technicalities to be worked out in ex-

tending our results to the continuous domain; however, as most real-life appli-

cations are continuous in nature, this is an important further direction we are

looking at. Given the ease with which options can be discovered, it would be

interesting to experiment with a dynamic scheme that adds options on the fly,

while solving tasks. Liben-Nowell et al. (2005) extend Kleinberg’s results to ar-

bitrary graphs by using rank instead of lattice distance. It would be interesting

to extend this approach to the reinforcement learning setting. The logarithmic

bounds on the number of decisions presented may have some interesting con-

sequences on theoretical guarantees of sample complexity as well.
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CHAPTER 7

Publications from this Work

1. Poster at the 9th European Workshop for Reinforcement Learning (EWRL
2011), titled “Learning in a Small World” described preliminary work of
Chapter 5.

2. Full Paper for Oral Presentation at the 11th international conference on
Autonomous Agents and Multi-agent Systems (AAMAS 2012), titled “Learn-
ing in a Small World” described the work in Chapter 5.

3. Paper submitted for review at the 10th European Workshop for Reinforce-
ment Learning (EWRL 2012), titled “Discovering Continuous Homomor-
phisms” described the work in Chapter 4.



APPENDIX A

An Alternate Approach to Find Continuous

Homomorphisms

In this appendix, we describe a technique we attempted to find continuous ho-

momorphisms. We did not continue, as the approach soon became intractable.

A.1 Modelling the State Space with a Gaussian Pro-

cess

We would like to unify our representation of continuous MDPs, using Gaussian

Processes (GP) as standard model; GPs can be easily learnt from trajectories

through the state space, and also model the stochasticity of the world dynam-

ics. A major limitation of using a Gaussian process to model action behaviours

is uni-modality; only actions which move the agent in one direction, with noise,

can be modelled. This limitation could be overcome using a mixture of Gaus-

sian processes, but that is out of the scope of this thesis.

Consider a state space S. Let us assume that S is a manifold, with a map-

ping into Rn, ξ. For each point x ∈ Rn, there is an associated vector of Gaussian

processes, ~a, representing the behaviour of the actions. The transition dynamics

can be described by the following equation,

T (s, a, s′) =
1

Z
exp

(
(ξ (s′)−ma (ξ (s)))

T
K−1
a (ξ (s)) (ξ (s′)−ma (ξ (s)))

)
,

where m and K, are the mean and covariance of the Gaussian process. Contin-

uous actions can also be handled, using m (ξ (s) , ξ (a)) and K−1 (ξ (s) , ξ (a)) in

place of the respective subscripted versions.

For the sake of notational convenience, we’ll take S = Rn in the sequel. The

results we present can be applied to the general continuous state space through



ξ.

S

x

x′

Ta

y

y′

Ta

f

f

Figure A.1: Bijective Automorphisms

Now, stating our problem in this framework, we would like to find bijective

automorphisms f : S → S that preserve the behaviour of the transition dynam-

ics described by Ta for all actions a ∈ A. At a high level, the diagram Figure A.1

describes what we hope to achieve. Mathematically,

Ta (f (s) , f (s′))− Ta (s, s′) = 0

1

|2πKa (f (s)) | exp
(

(f (s′)−ma (f (s)))
T
K−1
a (f (s)) (f (s′)−ma (f (s)))

)
−

1

|2πKa (s) | exp
(

(s′ −ma (s))
T
K−1
a (s) (s′ −ma (s))

)
= 0.

Aside from being in general intractable to solve, the above definition is too

strict for any practical domain. We will now explore two relaxations that will

let us find approximate homomorphisms.

A.2 Bayesian Approach

In this section, we will consider a Bayesian approach wherein the mapping f is

itself a Gaussian process,

f (x, y) =
1

Z
exp

(
(y − n (x))T L−1 (x) (y − n (x))

)
. We know that the probability of y transitioning to y′, given x and x′ are

the respective pre-images of y and y′, is Ta (x, x′); P (y → y′|x→ y, x′ → y′) =

P (x→ x′). Thus, we have,
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P (y → y′) =

∫
dx dx′ P (y → y′|x→ y, x′ → y′)P (x→ y)P (x′ → y′)

Ta (y, y′) =

∫
dx dx′ Ta (x, x′) f (x, y) f (x′, y′) .

In the approximate setting, we would like to minimise the KL divergence

between the left and right-hand sides.

Ta (y, y′) ≈
∫

dxf (x, y)Ex′ [f (x′, y′)] .

L (y) = Ey′
[
log Ta (y, y′)− log

∫
dxf (x, y)Ex′ [f (x′, y′)]

]
.

If
∫

dxf (x, y) = 1, then we can apply Jensen’s inequality to get,

L (y) ≥ Ey′
[
log Ta (y, y′)−

∫
dxf (x, y)Ex′ [log f (x′, y′)]

]
.

Note that log f (x′, y′) contains terms of complexity at most exp
(
xTAx+ bTx+ c

)
,

which can be evaluated by Gaussian integral.

Note 2. We can also take,

L (y) ≥
[
log Ta (y, y′)−

∫
dxf (x, y)Ex′ [logEy′ [f (x′, y′)]]

]
.

Note that Ey′ here is over a different distribution, namely Ta (y, y′) than f (x′, y′),

and hence not equal to 1.

To proceed in this direction, we need a prior on P (x), which is hard to de-

fine. More importantly, an implict condition is that
∫

dxP (x) f (x, y) = 1. This

involves integrating over the mean function of a Gaussian process; using the

typical Gaussian kernel, the form of the integrand is eex , which is intractable.
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