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Example: named entity recognition on tweets Named Entity Recognition (CoNLL 2003)
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» On-the-job learning allows a system to query the crowd for labels -
on the uncertain parts of an input as it arrives before making a
prediction. 1 4 71 = RES

On-the-job learning is capable of making consistently accurate
LOC predictions while reducing annotation costs.

» Can maintain accuracy on difficult examples by asking the 3 4 72 = LOC

crowd for assistance.
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» Approximated by Markov Chain Tree Search (MCTS) with progressive
widening, using an environment model. » Consider on-the-job learning to get accurate labels on your next

project for cheap.

On-the-job learning combines advan-
tages of both the above methods. Note, PREDICT
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» Use human-labelled examples as training data to learn the model.
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