

Example: named entity recognition on tweets **Big picture** How do you deploy a high accuracy classifier starting with GEORGE SOUP ON zero training examples? "LOCATION!" "PERSON ACCURACY "LOCATION!" OTAL N-THE-JOB "LOCATION!" "GEORGE ST."= "SOUP"= MIN. TO DEPLOY MIN. TO DEPLOY LOCATION RESOURCE SCALE SCALE How marginals evolve after incorporating responses What is on-the-job learning? SoGs S o G s $S \circ G s$ 1 On-the-job learning allows a system to query the crowd for labels RES on the uncertain parts of an input as it arrives **before** making a LOC "Soup" prediction. $q_1 = 1$ $\rightarrow r_1 = \text{RES}$ PER "George" Can maintain accuracy on difficult examples by asking the $\rightarrow r_2 = \text{LOC}$ $q_2 = 3$ crowd for assistance. S o G s S o G s S o G s Reduces costs on simpler examples by learning a better prediction model online (on-the-job). 2 User specifies a base prediction model and how to trade off accuracy, "Soup"? cost and latency. $q_1 = 1$ $\rightarrow r_1 = \text{RES}$ "George" System optimizes for utility using ideas from game playing and $q_2 = 3$ $\rightarrow r_2 = \text{PER}$ "George"? Bayesian decision theory. $q_3 = 3 -$ Approximating utility with MCTS Related work $\Delta = \text{system}$ Paradigm Area $\mathbf{O} = \operatorname{crowd}$ system and crowd. queried $q_1 = 3$ "George". Online active learning chooses the query $q_2 = 4$ "st." most informative examples to label *af*- INPUT PREDICT LABEL LEARN $|r_1 = \text{LOC}$ ter classification. Impossible to maintain high accuracy initially. $r_1 = LOC$ Active classification learns a static current best guess. 0.27 policy from a labelled dataset to choose INPUT LABEL^{*} PREDICT ► The system chooses actions that **maximize utility**. features to query at test time. **On-the-job learning** combines advanwidening, using an environment model. tages of both the above methods. Note, INPUT LABEL PREDICT LEARN Legion:AR (?) studied the user interface aspects of on-the-job learning, while we study the machine learning aspects of it.

On-the-Job Learning with Bayesian Decision Theory

Keenon Werling Arun Tejasvi Chaganty Percy Liang Christopher D. Manning

Department of Computer Science Stanford University

- **Stochastic game** between
- **States** capture time, queries in flight and received responses.
- **Actions** are querying for a label, waiting or returning

Approximated by Markov Chain Tree Search (MCTS) with progressive

$$\underbrace{p(\mathbf{y}, \mathbf{r}, \mathbf{t} \mid \mathbf{x}, \mathbf{q}, \mathbf{s})}_{\text{environment model}} \triangleq \underbrace{p_{\theta}(\mathbf{y} \mid \mathbf{x})}_{\text{prediction}} \prod_{i=1}^{k} \underbrace{p_{\mathsf{R}}(r_i \mid y_{q_i})}_{\text{annotator noise}} \underbrace{p_{\mathsf{T}}(t_i \mid s_i)}_{\text{latency}}.$$

► Use human-labelled examples as training data to learn the model.

- project for cheap.

ency/tok	Qs/tok	$PER\;F_1$	LOC F_1	$ORG\;F_1$	F_1
467 ms	1.0	90.2	78.8	71.5	80.2
750 ms	3.0	93.6	85.1	74.5	85.4
1350 ms	5.0	95.5	87.7	78.7	87.3
n/a	n/a	56.9	74.6	51.4	60.9
414 ms	0.61	95.2	89.8	79.8	88.3
267 ms	0.45	95.2	89.7	81.7	88.8

	System	Latency	Qs/ex	Acc.
	5-vote	13.5 s	5.00	98.7
	UNIGRAM	S		
Unigrams ——— Unigrams + RNN embeddings ———	Online	n/a	n/a	78.1
1	Threshold	10.9 s	2.99	95.9
	LENSE	11.7 s	3.48	98.6
Mun the martine -	RNN			
	Online	n/a	n/a	85.0
	Threshold	11.0 s	2.85	96.0
0 100 120 140 160 180 200 Time	LENSE	11.0 s	3.19	98.6

Consider on-the-job learning to get accurate labels on your next

Easy to use open-source implementation, LENSE, available!

Future directions include improving confidence estimation, learning from measurements and more applications.

{keenon,chaganty,pliang,manning}@cs.stanford.edu