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Abstract

Mixture modeling is a general technique for making any simple model more ex-
pressive through weighted combination. This generality and simplicity in part
explains the success of the Expectation Maximization (EM) algorithm, in which
updates are easy to derive for a wide class of mixture models. However, the likeli-
hood of a mixture model is non-convex, so EM has no known global convergence
guarantees. Recently, method of moments approaches offer global guarantees for
some mixture models, but they do not extend easily to the range of mixture mod-
els that exist. In this work, we present Polymom, an unifying framework based on
method of moments in which estimation procedures are easily derivable, just as
in EM. Polymom is applicable when the moments of a single mixture component
are polynomials of the parameters. Our key observation is that the moments of
the mixture model are a mixture of these polynomials, which allows us to cast
estimation as a Generalized Moment Problem. We solve its relaxations using
semidefinite optimization, and then extract parameters using ideas from computer
algebra. This framework allows us to draw insights and apply tools from convex
optimization, computer algebra and the theory of moments to study problems in
statistical estimation. Simulations show good empirical performance on several
models.

1 Introduction

Mixture models play a central role in machine learning and statistics, with diverse applications
including bioinformatics, speech, natural language, and computer vision. The idea of mixture
modeling is to explain data through a weighted combination of simple parametrized distributions
[1, 2]. In practice, maximum likelihood estimation via Expectation Maximization (EM) has been
the workhorse for these models, as the parameter updates are often easily derivable. However, EM
is well-known to suffer from local optima. The method of moments, dating back to Pearson [3] in
1894, is enjoying a recent revival [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] due to its strong global theoreti-
cal guarantees. However, current methods depend strongly on the specific distributions and are not
easily extensible to new ones.

In this paper, we present a method of moments approach, which we call Polymom, for estimating
a wider class of mixture models in which the moment equations are polynomial equations (Section
2). Solving general polynomial equations is NP-hard, but our key insight is that for mixture models,
the moments equations are mixtures of polynomials equations and we can hope to solve them if the
moment equations for each mixture component are simple polynomials equations that we can solve.
Polymom proceeds as follows: First, we recover mixtures of monomials of the parameters from the
data moments by solving an instance of the Generalized Moment Problem (GMP) [14, 15] (Section
3). We show that for many mixture models, the GMP can be solved with basic linear algebra and
in the general case, can be approximated by an SDP in which the moment equations are linear
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mixture model
xt data point (RD)
zt latent mixture component ([K])
θk parameters of component k (RP )
πk mixing proportion of p(z = k)
[θk]Kk=1 all model parameters
moments of data
φn(x) observation function
fn(θ) observation function
moments of parameters
Ly the Riesz linear functional
yα yα = Ly(θα), αth moment
µ probability measure for y
y (yα)α the moment sequence
Mr(y) moment matrix of degree r

sizes
D data dimensions
K mixture components
P parameters of mixture components
T data points
N constraints
[N ] {1, . . . , N}
r degree of the moment matrix
s(r) size of the degree r moment matrix
polynomials
R[θ] polynomial ring in variables θ
N set of non-negative integers
α,β,γ vector of exponents (in NP or ND)
θα monomial

∏P
p=1 θ

αp
p

anα coefficient of θα in fn(θ)

Table 1: Notation: We use lowercase letters (e.g., d) for indexing, and the corresponding uppercase
letter to denote the upper limit (e.g., D, in “sizes”). We use lowercase letters (e.g., θk,p) for scalars,
lowercase bold letters (e.g., θ) for vectors, and bold capital letters (e.g., M) for matrices.
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5. Solve for parameters

Figure 1: An overview of applying the Polymom framework.

constraints. Second, we extend multiplication matrix ideas from the computer algebra literature
[16, 17, 18, 19] to extract the parameters by solving a generalized eigenvalue problem (Section 4).

Polymom improves on previous method of moments approaches in both generality and flexibility.
First, while tensor factorization has been the main driver for many of the method of moments ap-
proaches for many types of mixture models, [6, 20, 9, 8, 21, 12], each model required specific adap-
tations which are non-trivial even for experts. In contrast, Polymom provides a unified principle for
tackling new models that is as turnkey as computing gradients or EM updates. To use Polymom
(Figure 1), one only needs to provide a list of observation functions (φn) and derive their expected
values expressed symbolically as polynomials in the parameters of the specified model (fn). Poly-
mom then estimates expectations of φn and outputs parameter estimates of the specified model.
Since Polymom works in an optimization framework, we can easily incorporate constraints such
as non-negativity and parameter tying which is difficult to do in the tensor factorization paradigm.
In simulations, we compared Polymom with EM and tensor factorization and found that Polymom
performs similarly or better (Section 5).
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2 Problem formulation

2.1 The method of moments estimator

In a mixture model, each data point x ∈ RD is associated with a latent component z ∈ [K]:

z ∼ Multinomial(π), x | z ∼ p(x;θ∗z), (1)

where π = (π1, . . . , πK) are the mixing coefficients, θ∗k ∈ RP are the true model parameters for
the kth mixture component, and x ∈ RD is the random variable representing data. We restrict our
attention to mixtures where each component distribution comes from the same parameterized family.
For example, for a mixture of Gaussians, θ∗k = (ξ∗k ∈ RD,Σ∗k ∈ RD×D) consists of the mean and
covariance of component k.

We defineN observation functions φn : RD → R for n ∈ [N ] and define fn(θ) to be the expectation
of φn over a single component with parameters θ, which we assume is a simple polynomial:

fn(θ) := Ex∼p(x;θ)[φn(x)] =
∑

α

anαθ
α, (2)

where θα =
∏P
p=1 θ

αp
p . The expectation of each observation function E[φn(x)] can then be ex-

pressed as a mixture of polynomials of the true parameters E[φn(x)] =
∑K
k=1 πkE[φn(x)|z = k] =∑K

k=1 πkfn(θ∗k).

The method of moments for mixtures seeks parameters [θk]Kk=1 that satisfy the moment conditions

E[φn(x)] =

K∑

k=1

πkfn(θk). (3)

where E[φn(x)] can be estimated from the data: 1
T

∑T
t=1 φn(xt)

p→ E[φn(x)]. The goal of this work
is to find parameters satisfying moment conditions that can be written in the mixture of polynomial
form (3). We assume that the N given observations functions φ1, . . . , φN uniquely identify the
model parameters (up to permutation of the components).
Example 2.1 (1-dimensional Gaussian mixture). Consider a K-mixture of 1D Gaussians with pa-
rameters θk = [ξk, σ

2
k] corresponding to the mean and variance, respectively, of the k-th component

(Figure 1: steps 1 and 2). We choose the observation functions, φ(x) = [x1, . . . , x6], which have
corresponding moment polynomials, f(θ) = [ξ, ξ2 +σ2, ξ3 +3ξσ2, . . . ]. For example, instantiating
(3), E[x2] =

∑K
k=1 πk(ξ2k + σ2

k). Given φ(x) and f(θ∗), and data, the Polymom framework can
recover the parameters. Note that the 6 moments we use have been shown by [3] to be sufficient for
a mixture of two Gaussians.
Example 2.2 (Mixture of linear regressions). Consider a mixture of linear regressions [22, 9],
where each data point x = [x, y] is drawn from component k by sampling x from an unknown
distribution independent of k and setting y = wkx + ε, where ε ∼ N (0, σ2

k). The parameters
θk = (wk, σ

2
k) are the slope and noise variance for each component k. Let us take our observation

functions to be φ(x) = [x, xy, xy2, x2, . . . , x3y2], for which the moment polynomials are f(θ) =
[E[x],E[x2]w,E[x3]w2 + E[x]σ2,E[x2], . . .].

In Example 2.1, the coefficients anα in the polynomial fn(θ) are just constants determined by inte-
gration. For the conditional model in Example 2.2, the coefficients depends on the data. However,
we cannot handle arbitrary data dependence, see Appendix D for sufficient conditions and coun-
terexamples.

2.2 Solving the moment conditions

Our goal is to recover model parameters θ∗1, . . . ,θ
∗
K ∈ RP for each of the K components of the

mixture model that generated the data as well as their respective mixing proportions π1, . . . , πK ∈
R. To start, let’s ignore sampling noise and identifiability issues and suppose that we are given exact
moment conditions as defined in (3). Each condition fn ∈ R[θ] is a polynomial of the parameters
θ, for n = 1, . . . , N .
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Equation 3 is a polynomial system of N equations in the K + K × P variables [π1, . . . , πK ] and
[θ1, . . . ,θK ] ∈ RP×K . It is natural to ask if standard polynomial solving methods can solve (3) in
the case where each fn(θ) is simple. Unfortunately, the complexity of general polynomial equation
solving is lower bounded by the number of solutions, and each of theK! permutations of the mixture
components corresponds to a distinct solution of (3) under this polynomial system representation.
While several methods can take advantage of symmetries in polynomial systems [23, 24], they still
cannot be adapted to tractably solve (3) to the best of our knowledge.

The key idea of Polymom is to exploit the mixture representation of the moment equations (3).
Specifically, let µ∗ be a particular “mixture” over the component parameters θ∗1, . . . ,θ

∗
k (i.e. µ∗ is a

probability measure). Then we can express the moment conditions (3) in terms of µ∗:

E[φn(x)] =

∫
fn(θ) µ∗(dθ), where µ∗(θ) =

K∑

k=1

πkδ(θ − θ∗k). (4)

As a result, solving the original moment conditions (3) is equivalent to solving the following fea-
sibility problem over µ, but where we deliberately “forget” the permutation of the components by
using µ to represent the problem:

find µ ∈M+(RP ), the set of probability measures over RP
s.t.

∫
fn(θ) µ(dθ) = E[φn(x)], n = 1, . . . , N

µ is K-atomic (i.e. sum of K deltas).
(5)

If the true model parameters [θ∗k]Kk=1 can be identified by the N observed moments up to permuta-
tion, then the measure µ∗(θ) =

∑K
k=1 πkδ(θ − θ∗k) solving Problem 5 is also unique.

Polymom solves Problem 5 in two steps:

1. Moment completion (Section 3): We show that Problem 5 over the measure µ can be
relaxed to an SDP over a certain (parameter) moment matrix Mr(y) whose optimal solution
is Mr(y

∗) =
∑K
k=1 πkvr(θ

∗
k)vr(θ

∗
k)>, where vr(θ

∗
k) is the vector of all monomials of

degree at most r.

2. Solution extraction (Section 4): We then take Mr(y) and construct a series of generalized
eigendecomposition problems, whose eigenvalues yield [θ∗k]Kk=1.

Remark. From this point on, distributions and moments refer to µ∗ which is over parameters, not
over the data. All the structure about the data is captured in the moment conditions (3).

3 Moment completion

The first step is to reformulate Problem 5 as an instance of the Generalized Moment Problem (GMP)
introduced by [15]. A reference on the GMP, algorithms for solving GMPs, and its various exten-
sions is [14]. We start by observing that Problem 5 really only depends on the integrals of monomials
under the measure µ: for example, if fn(θ) = 2θ31 − θ21θ2, then we only need to know the integrals
over the constituent monomials (y3,0 :=

∫
θ31µ(dθ) and y2,1 :=

∫
θ21θ2µ(dθ)) in order to evaluate

the integral over fn. This suggests that we can optimize over the (parameter) moment sequence
y = (yα)α∈NP , rather than the measure µ itself. We say that the moment sequence y has a repre-
senting measure µ if yα =

∫
θα µ(dθ) for all α, but we do not assume that such a µ exists. The

Riesz linear functional Ly : R[θ]→ R is defined to be the linear map such that Ly(θα) := yα and
Ly(1) = 1. For example, Ly(2θ31 − θ21θ2 + 3) = 2y3,0 − y2,1 + 3. If y has a representing measure
µ, then Ly simply maps polynomials f to integrals of f against µ.

The key idea of the GMP approach is to convexify the problem by treating y as free variables
and then introduce constraints to guarantee that y has a representing measure. First, let vr(θ) :=
[θα : |α| ≤ r] ∈ R[θ]s(r) be the vector of all s(r) monomials of degree no greater than r. Then,
define the truncated moment matrix as Mr(y) := Ly(vr(θ)vr(θ)T), where the linear functional
Ly is applied elementwise (see Example 3.1 below). If y has a representing measure µ, then Mr(y)
is simply a (positive) integral over rank 1 matrices vr(θ)vr(θ)T with respect to µ, so necessarily
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Mr(y) � 0 holds. Furthermore, by Theorem 1 [25], for y to have aK-atomic representing measure,
it is sufficient that rank(Mr(y)) = rank(Mr−1(y)) = K. So Problem 5 is equivalent to

find y ∈ RN (or equivalently, find M(y))
s.t.

∑
α anαyα = E[φn(x)], n = 1, . . . , N

Mr(y) � 0, y0 = 1
rank(Mr(y)) = K and rank(Mr−1(y)) = K.

(6)

Unfortunately, the rank constraints in Problem 6 are not tractable. We use the following relaxation
to obtain our final (convex) optimization problem

minimize
y

tr(CMr(y))

s.t.
∑

α anαyα = E[φn(x)], n = 1, . . . , N
Mr(y) � 0, y0 = 1

(7)

where C � 0 is a chosen scaling matrix. A common choice is C = Is(r) corresponding to mini-
mizing the nuclear norm of the moment matrix, the usual convex relaxation for rank. Appendix A
discusses some other choices of C.

Example 3.1 (moment matrix for a 1-dimensional Gaussian mixture). Recall that the parameters
θ = [ξ, σ2] are the mean and variance of a one dimensional Gaussian. Let us choose the monomials
v2(θ) = [1, ξ, ξ2, σ2]. Step 4 for Figure 1 shows the moment matrix when using r = 2. Each row
and column of the moment matrix is labeled with a monomial and entry (i, j) is subscripted by the
product of the monomials in row i and column j. For φ2(x) = x2, we have f2(θ) = ξ2 + c, which
leads to the linear constraint y2,0 + y0,1 − E[x2] = 0. For φ3(x) = x3, f3(θ) = ξ3 + 3ξc, leading
to the constraint y3,0 + 3y1,1 − E[x3] = 0.

Related work. Readers familiar with the sum of squares and polynomial optimization litera-
ture [26, 27, 28, 29] will note that Problem 7 is similar to the SDP relaxation of a polynomial
optimization problem. However, in typical polynomial optimization, we are only interested in so-
lutions θ∗ that actually satisfy the given constraints, whereas here we are interested in K solutions
[θ∗k]Kk=1, whose mixture satisfies constraints corresponding to the moment conditions (3). Within
machine learning, generalized PCA has been formulated as a moment problem [30] and the Hankel
matrix (basically the moment matrix) has been used to learn weighted automata [13]. While similar
tools are used, the conceptual approach and the problems considered are different. For example,
the moment matrix of this paper consists of unknown moments of the model parameters, whereas
exisiting works considered moments of the data that are always directly observable.

Constraints. Constraints such as non-negativity (for parameters which represent probabilities or
variances) and parameter tying [31] are quite common in graphical models and are not easily ad-
dressed with existing method of moments approaches. The GMP framework allows us to incorpo-
rate some constraints using localizing matrices [32]. Consider the case of a 2D mixture of Gaussians
where the mean parameters ξ1, ξ2 lies on the parabola ξ1 − ξ22 = 0 for all components. In this case,
we just need to add constraints to Problem 7: y(1,0)+β − y(0,2)+β = 0 for all β ∈ N2 up to degree
|β| ≤ 2r − 2. Thus, we can handle constraints during the estimation procedure rather than project-
ing back onto the constraint set as a post-processing step. This is necessary for models that only
become identifiable by the observed moments after constraints are taken into account. By incorpo-
rating these constraints into parameter estimation, we can possibly identify the model parameters
with fewer moments. We describe this method and its learning implications in Appendix C.1.

Guarantees and statistical efficiency. In some circumstances, e.g. in three-view mixture models
or the mixture of linear regressions, the constraints fully determine the moment matrix; we consider
these cases in Section 5 and Appendix B. While there are no general guarantee on Problem 7, the
flat extension theorem tells us when the moment matrix corresponds to a unique solution (more
discussions in Appendix A):

Theorem 1 (Flat extension theorem [25]). Let y be the solution to Problem 7 for a particular r. If
Mr(y) � 0 and rank(Mr−1(y)) = rank(Mr(y)) then y is the optimal solution to Problem 6 for
K = rank(Mr(y)) and there exists a unique K-atomic supporting measure µ of Mr(y).
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Recovering Mr(y) is linearly dependent on small perturbations of the input [33], suggesting that
the method has polynomial sample complexity for most models where the moments concentrate at
a polynomially rate. In Appendix C, we discuss a few other important considerations like noise
robustness, making Problem 7 more statistically efficient, and some open problems.

4 Solution extraction

Having completed the (parameter) moment matrix Mr(y) (Section 3), we now turn to the problem
of extracting the model parameters [θ∗k]Kk=1. The solution extraction method we present is based on
ideas from solving multivariate polynomial systems where the solutions are eigenvalues of certain
multiplication matrices [16, 17, 34, 35].1 The main advantage of the solution extraction view is
that higher-order moments and structure in parameters are handled in the framework without model-
specific effort.

Recall that the true moment matrix is Mr(y
∗) =

∑K
k=1 πkv(θ∗k)v(θ∗k)

T, where v(θ) :=

[θα1 , . . . ,θαs(r) ] ∈ R[θ]
s(r) contains all the monomials up to degree r. We use θ = [θ1, . . . , θP ]

for variables and [θ∗k]Kk=1 for the true solutions to these variables (note the boldface). For exam-
ple, θ∗k,p := (θ∗k)p denotes the pth value of the kth component, which corresponds to a solution
for the variable θp. Typically, s(r) � K,P and the elements of v(θ) are arranged in a degree
ordering so that ||αi||1 ≤ ||αj ||1 for i ≤ j. We can also write Mr(y

∗) = VPV>, where
V := [v(θ∗1), . . . ,v(θ∗K)] ∈ Rs(r)×K is the canonical basis and P := diag(π1, . . . , πK) con-
tains the mixing proportions. At the high level, we want to factorize Mr(y

∗) to get V, however we
cannot simply eigen-decompose Mr(y

∗) since V is not orthogonal. To overcome this challenge,
we will exploit the internal structure of V to construct several other matrices that share the same
factors and perform simultaneous diagonalization.

Specifically, let V[β1; . . . ;βK ] ∈ RK×K be a sub-matrix of V with only the rows corresponding to
monomials with exponents β1, . . . ,βK ∈ NP . Typically, β1, . . . ,βK are just the firstK monomials
in v. Now consider the exponent γp ∈ NP which is 1 in position p and 0 elsewhere, corresponding
to the monomial θγp = θp. The key property of the canonical basis is that multiplying each column
k by a monomial θ∗k,p just performs a “shift” to another set of rows:

V[β1; . . . ;βK ]Dp = V
[
β1 + γp; . . . ;βK + γp

]
, where Dp := diag(θ∗1,p, . . . , θ

∗
K,p). (8)

Note that Dp contains the pth parameter for all K mixture components.

Example 4.1 (Shifting the canonical basis). Let θ = [θ1, θ2] and the true solutions be θ∗1 = [2, 3]
and θ∗2 = [−2, 5]. To extract the solution for θ1 (which are (θ∗1,1, θ

∗
2,1)), let β1 = (1, 0),β2 = (1, 1),

and γ1 = (1, 0).

V =




v(θ1) v(θ2)

1 1 1
θ1 2 −2
θ2 3 5
θ21 4 4
θ1θ2 6 −10
θ22 9 25
θ21θ2 12 20




[ v1 v2

θ1 2 −2
θ1θ2 6 −10

]

︸ ︷︷ ︸
V[β1;β2]

[
2 0
0 −2

]

︸ ︷︷ ︸
diag(θ1,1,θ2,1)

=

[ v1 v2

θ21 4 4
θ21θ2 12 20

]

︸ ︷︷ ︸
V[β1+γ1;β2+γ1]

(9)

While the above reveals the structure of V, we don’t know V. However, we recover its column space
U ∈ Rs(r)×K from the moment matrix Mr(y

∗), for example with an SVD. Thus, we can relate
U and V by a linear transformation: V = UQ, where Q ∈ RK×K is some unknown invertible
matrix.

Equation 8 can now be rewritten as:

U[β1; . . . ;βK ]QDp = U
[
β1 + γp; . . . ;βK + γp

]
Q, p = 1, . . . , P, (10)

1 [36] is a short overview and [35] is a comprehensive treatment including numerical issues.
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Table 2: Applications of the Polymom framework. See Appendix B.2 for more details.

Mixture of linear regressions
Model Observation functions
x = [x, υ] is observed where x ∈ RD is drawn
from an unspecified distribution and
υ ∼ N (w · x, σ2I), and σ2 is known. The
parameters are θ∗k = (wk) ∈ RD .

φα,b(x) = xαυb for 0 ≤ |α| ≤ 3, b ∈ [2].
Moment polynomials
fα,1(θ) =

∑P
p=1 E[xα+γp ]wp

fα,2(θ) = E[xα]σ2+
∑P
p,q=1 E[xαxpxq]wpwq ,

where the γp ∈ NP is 1 in position p and 0 else-
where.

Mixture of Gaussians
Model Observation functions
x ∈ RD is observed where x is drawn from a
Gaussian with diagonal covariance:
x ∼ N (ξ,diag(c)). The parameters are
θ∗k = (ξk, ck) ∈ RD+D .

φα(x) = xα for 0 ≤ |α| ≤ 4.
Moment polynomials
fα(θ) =

∏D
d=1 hαd(ξd, cd).2

Multiview mixtures
Model Observation functions
With 3 views, x = [x(1), x(2), x(3)] is observed
where x(1), x(2), x(3) ∈ RD and x(`) is drawn
from an unspecified distribution with mean ξ(`)

for ` ∈ [3]. The parameters are
θ∗k = (ξ

(1)
k , ξ

(2)
k , ξ

(3)
k ) ∈ RD+D+D .

φijk(x) = x
(1)
i x

(2)
j x

(3)
k where 1 ≤ i, j, k ≤ D.

Moment polynomials
fijk(θ) = ξ

(1)
i ξ

(2)
j ξ

(3)
k .

which is a generalized eigenvalue problem where Dp are the eigenvalues and Q are the eigenvectors.
Crucially, the eigenvalues, Dp = diag(θ∗1,p, . . . , θ

∗
K,p) give us solutions to our parameters. Note

that for any choice of β1, . . . ,βK and p ∈ [P ], we have generalized eigenvalue problems that
share eigenvectors Q, though their eigenvectors Dp may differ. Corresponding eigenvalues (and
hence solutions) can be obtained by solving a simultaneous generalized eigenvalue problem, e.g., by
using random projections like Algorithm B of [4] or more robust [37] simutaneous diagonalization
algorithms [38, 39, 40].

We describe one approach to solve (10), which is similar to Algorithm B of [4]. The idea is to
take P random weighted combinations of the equations (10) and solve the resulting (generalized)
eigendecomposition problems. Let R ∈ RP×P be a random matrix whose entries are drawn from
N (0, 1). Then solve U[β1; . . . ;βK ]

−1
(∑P

p=1Rq,pU
[
β1 + γp; . . . ;βK + γp

])
Q = QDq for

each q = 1, . . . Q. The resulting eigenvalues can be collected in Λ ∈ RP×K , where Λq,k = Dq,k,k.
Note that by definition Λq,k =

∑P
p=1Rq,pθ

∗
k,p, so we can simply invert to obtain [θ∗1, . . . ,θ

∗
K ] =

R−1Λ. Although this simple approach does not have great numerical properties, these eigenvalue
problems are solvable if the eigenvalues [λq,1, . . . , λq,K ] are distinct for all q, which happens with
probability 1 as long as the parameters θ∗k are different from each other. In Appendix B.1, we
show how the tensor decomposition algorithm from [4] can be seen as solving (10) for a particular
instantiation of β1, . . .βK .

5 Applications
Let us now look at some applications of Polymom. Table 2 presents several models with corre-
sponding observation functions and moment polynomials. It is fairly straightforward to write down
observation functions for a given model. The moment polynomials can then be derived by comput-
ing expectations under the model, a computation comparable to deriving updates for EM.

2 hα(ξ, c) =
∑bα/2c
i=0 aα,α−2iξ

α−2ici and aα,i be the absolute value of the coefficient of the degree i term
of the αth (univariate) Hermite polynomial. For example, the first few are h1(ξ, c) = ξ, h2(ξ, c) = ξ2 + c,
h3(ξ, c) = ξ3 + 3ξc, h4(ξ, c) = ξ4 + 6ξ2c+ 3c2.
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Methd. EM TF Poly EM TF Poly EM TF Poly
Gaussians K,D T = 103 T = 104 T = 105

spherical 2, 2 0.37 2.05 0.58 0.24 0.73 0.29 0.19 0.36 0.14
diagonal 2, 2 0.44 2.15 0.48 0.48 4.03 0.40 0.38 2.46 0.35
constrained 2, 2 0.49 7.52 0.38 0.47 2.56 0.30 0.34 3.02 0.29
Others K,D T = 104 T = 105 T = 106

3-view 3, 3 0.38 0.51 0.57 0.31 0.33 0.26 0.36 0.16 0.12
lin. reg. 2, 2 - - 3.51 - - 2.60 - - 2.52

Table 3: T is the number of samples, and the error metric is defined above. Methods: EM: sklearn
initialized with k-means using 5 random restarts; TF: tensor power method implemented in Python;
Poly: Polymom by solving Problem 7. Models: for mixture of Gaussians, we have σ ≈ 2||µ1 −
µ2||2; ‘spherical’ and ‘diagonal’ describes the type of covariance matrix. The mean parameters of
constrained Gaussians satisfies µ1 + µ2 = 1. The best result is bolded. TF only handles spherical
variance, but it was of interest to see what TF does if the data is drawn from mixture of Gaussians
with diagonal covariance, these results are in strikeout.

We implemented Polymom for several mixture models in Python.3 We used CVXOPT to handle
the SDP and the random projections algorithm from to extract solutions. In Table 3, we show the
relative error maxk ||θk − θ∗k||2/||θ∗k||2 averaged over 10 random models of each class.

Guarantees. In the rest of this section, we will discuss guarantees on parameter recovery for each
of these models. In summary, we match many of the existing results in the literature for the mixture
of linear regressions and multiview mixtures whenK ≤ D. In these case the moment matrix is fully
determined by the linear constraints and Problem 7 is just a linear solve. More discussions can be
found in Appendix B.2.

In addition, we can obtain per-instance guarantees in the following sense. Recall that Polymom
involves solving an SDP relaxation and performing solution extraction. If the SDP solution has a
flat extension (Theorem 1) at the true number of components K (a checkable assumption), then we
have solved the moment completion problem exactly, and since solution extraction always works,
we are guaranteed to obtain the true parameters. On the other hand, if the SDP solution has a higher
rank K ′ > K, then as a consolation prize, we have found a K ′-mixture model that matches the
moments (that we observed) of the true K-mixture model.

6 Conclusion
We presented an unifying framework for learning many types of mixture models via the method
of moments. For example, for the mixture of Gaussians, we can apply the same algorithm to both
mixtures in 1D needing higher-order moments [3, 11] and mixtures in high dimensions where lower-
order moments suffice [6]. The Generalized Moment Problem [15, 14] and its semidefinite relax-
ation hierarchies is what gives us the generality, although we rely heavily on the ability of nuclear
norm minimization to recover the underlying rank. As a result, while we always obtain parame-
ters satisfying the moment conditions, we do not have formal guarantees on consistent estimation
in general, although we do have guarantees for several model families. The second main tool is
solution extraction, which characterizes a more general structure of mixture models compared the
tensor structure observed by [6, 4]. This view draws connections to the literature on solving polyno-
mial systems, where many techniques might be useful [35, 18, 19]. Finally, through the connections
we’ve drawn, it is our hope that Polymom can make the method of moments as turnkey as EM on
more latent-variable models, and provide a way to improve the statistical efficiency of method of
moments procedures.

Acknowledgments. This work was supported by a Microsoft Faculty Research Fellowship to the
third author and a NSERC PGS-D fellowship for the first author.
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A Theory of the Moment Completion Problem

For solution extraction, we assumed that moments of all monomials are observed but for many models only
polynomials of parameters can be estimated from the data. For example, in a Gaussian mixture the 2nd moment
observable function φ(x) = ξ2 + c is a polynomial, but solution extraction requires moments of monomials
like ξ2 and c. Furthermore, we assumed in Section 4 that there exists underlying true parameters [θ∗k]Kk=1

while an arbitrary moment sequence of the parameters y and its corresponding moment matrix M(y) may
not correspond to any parameters (i.e. no representing measure). In Section 5, we give an example of how
moment completion can be done with just linear algebra for multiview models, and we focus on the harder case
of having to solve the SDP Problem 7 in this section.

While we do not have a complete answer since the rank constrained Problem 6 cannot be solved, we analyze the
relaxed moment completion problem (Problem 7) and give some sufficient conditions for solution extraction
and sufficient conditions for parameter recovery.

A.1 Conditions for solution extraction

Under the exact setting, and assuming a moment matrix generated by true parameters θ∗, In Section 4, we
showed that simple conditions based only on the column space basis is sufficient for solution extraction to be
successful. However, to further investigate consistency and noise, we need to address a few more important
issues. First consider the noiseless setting, we may not have enough moment contraints to guarantee a unique
solution (identifiability). Even if we assume that we have enough constraints for identifying a K mixture, we
still do not know if solving the relaxed Problem 7 that relaxed the rank = K constraint can recover the true
parameters. Second, under noise, there may not exist a rank K basis of the moment matrix and even when a
rank K basis exists, it may not correspond to any true parameters.

We now address the problem of when some moment matching parameters can be extracted. We first discuss the
concept of a flat extension which is the same as conditions in Section 4 where “Bp := U

[
γp + [β1, . . . ,βK ]

]
is observed” and U[β1; . . . ;βK ] is a column space basis of Mr(y). Let the highest degree monomial of
U[β1; . . . ;βK ] be of degree r − 1 = deg(θβK ) = |βK |, and the highest degree monomial of Bp :=
U
[
γp + [β1, . . . ,βK ]

]
be of degree r =

∣∣γp + βK
∣∣ = |deg(βK)| + 1. Since U[β1; . . . ;βK ] is a basis of

col(Mr(y))

rank (Mr−1(y)) = rank (U[β1; . . . ;βK ]) = K (11)

= rank (Mr(y)) ≥ rank
(
U
[
γp + [β1, . . . ,βK ]

])
. (12)

If we got this basis from the moment matrix, then we say that the moment matrix Mr−1(y) corresponding
to U[β1; . . . ;βK ] has a flat extension, because Mr−1(y) can be extended to a moment matrix Mr(y) with
higher degree monomials without an increase in rank. The concept of flat extension and its consequences are
of central importance for the truncated moment problem, which is quite relevant to our problem and studied
extensively by [1, 2, 3, 4]. Next, we reproduce the simplest flat extension theorem:
Theorem A.1 ([1]: flat extension theorem). Suppose Mr−1(y) � 0 and there exists Mr(y) so that
rank(Mr(y)) = rank(Mr−1(y)) (i.e. a flat extension), then there exists an unique rank(Mr(y))-atomic
representing measure µ of Mr(y).

Here the first column of Mr(y) contains every monomial of degree up to r so that deg(vr(θ)) = r. However,
several generalizations of the flat extension theorem are also useful for estimation of mixture models where
sparse monomials are handled [5, 6] or where constraints are handled [4].

The conceptual importance is that Theorem A.1 allows us to work with just the moment matrix satisfying
constraints from possibly noisy observations, without assuming the moment matrix is generated by some true
parameters. Of course, it also provides a checkable criterion for when solutions can be extracted [7]. We still
do not know if solving Problem 7 provides a flat extension in a finite number of steps. [8, 9, 10] investigated
this issue very recently and showed that linear optimization over the cone of moments have finite convergence
under generic conditions (theorem 4.2 of [10]).

Still, our issue is not fully resolved as representing measures under linear constraints may not be unique, and
as a result even a flat moment matrix may not correspond to the true parameters. For parameter fitting, we’d
like to find the solution with minimal rank or otherwise optimal in some way. We explore this issue next but
unfortunately we can only give some partial answers.
Proposition A.2 (existence of C). In the noiseless setting, there exist C so that minimizing
C •Mr(y)) = c · y will give the right solution.
Proof. Let Mr(y) = UΣUT be the SVD with U ∈ Rs(r)×K and Σ ∈ RK×K . Let U⊥ ∈ Rs(r)×(s(r)−K)

be the orthogonal compliment of U, then any C = U⊥DUT
⊥ is fine for arbitrary diagonal matrix D ∈

R(s(r)−K)×(s(r)−K).
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The convex iteration algorithm [11] is one way to reduce rank that sometimes works for us empirically, where
if the convex iteration algorithm converges to 0, then the moment matrix has rank K.

B Examples

B.1 Tensor factorization as solution extraction

Example B.1 (Tensor decomposition as solution extraction). Many latent variable models have been tackled
via tensor decomposition [12], and symmetric, undercomplete tensor decomposition can be framed as a solu-
tion extraction problem. Suppose we observe the tensor T :=

∑K
k=1 θ

∗⊗3
k ∈ RP×P×P . We would like to

recover the components θ∗k. For us, the inputs are constraints θrθsθt − Trst = 0 for all r, s, t = 1, . . . , P .
Choose v(θ) = [1, θ1, . . . , θP , θ

2
1, θ1θ2, . . . , θ

2
P ] = [1,θ, vecs(θ ⊗ θ)], where vecs : RP×P → RP

2

just
flattens the matrix. In the simplest case, suppose P = K and rank(U) = K. Then the fully observed U is

U =


size P

1 U1

P U2

P2 U3

 =


terms θ

1 Ly(θ)
θ Ly(θ ⊗ θ)

vecs(θ⊗θ) Ly(vecs(θ ⊗ θ)⊗ θ)

 (13)

where the linear functional Ly applies elementwise. One choice of basis is just all the variables
U[β1; . . . ;βK ] = U2 and the eigenvalue problem we are required to solve is the generalized Hermitian

eigenvalue problem U2QD =
(∑P

p=1 ηpLy(θpθ ⊗ θ)
)

Q. [13] proposed an algorithm that is procedu-

rally identical, where, in their notation Pairs := U2 and Triples(η) :=
(∑P

p=1 ηpLy(θpθ ⊗ θ)
)

, and the

algorithm proposed needed to solve the eigenvalue problem B(η) = Pairs−1 Triples(η).

Typically, β1, . . . ,βK are just the first K monomials in v (i.e. the K monomials of the smallest degree).

Under this formulation, generalization to the fully-observed overcomplete tensor decomposition case K ≥
D = P is clear if we observe enough moments to have enough basis vectors such that rank(U[β1; . . . ;βK ]) =
K:
Proposition B.2. If K ≤ 1 +P +P 2 + · · ·+P r = Pr+1−1

P−1
, then solution extraction succeeds if we observe

moments up to order 2r + 1 and monomials vectors of the true parameters vr(θ1), . . . ,vr(θK) are linearly
independent.

Proof. To get the theoretical result, it suffices to consider higher-order moments:

U =

[terms vecs(θ⊗r)

vecs(θ⊗r) Ly(vecs(θ⊗r)⊗ vecs(θ⊗r))
vecs(θ⊗r+1) Ly(vecs(θ⊗r+1)⊗ vecs(θ⊗r))

]
(14)

where we can take the U[β1; . . . ;βK ] from the top block, and U
[
β1 + γq; . . . ;βK + γq

]
belongs to the

bottom block for all q. So 2r+ 1 order moments is needed if K ≤ P r and this result is comparable to [14]. In
practice, we would take all moments vecs(θ⊗1), . . . , vecs(θ⊗r+1). We may use lower order moments as well:

U =



terms vecs(θ⊗1) vecs(θ⊗2) ··· vecs(θ⊗r)

vecs(θ⊗1)

...
vecs(θ⊗2)

... · · · Ly(vecs(θ⊗l)⊗ vecs(θ⊗m)) · · ·

vecs(θ⊗r+1)

...

 (15)

where the entry of this matrix at block l,m is Ly(vecs(θ⊗l) ⊗ vecs(θ⊗m)) as expected. While this still
requires observing 2r + 1th order moments, lower order moments are more accurate and can result in better
parameter estimates.

B.2 Moment completion for specific models

B.2.1 Mixture of Linear Regressions

In Example 2.2, we described the mixture of linear regressions model in 1-dimension with parameters θ∗k =
(wk, σ

2
k). Let us now consider theD-dimensional extension: we observe x = [x, υ]4 where x := [x1, . . . , xD]

4 We use υ here since y is reserved for the parameter moments.
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is drawn from an unspecified distribution and υ = w ·x+ ε with ε ∼ N (0, σ2) for a known σ. The parameters
are θ∗k = (wk) for 1 ≤ k ≤ K. Next, we choose observation functions φα,b(x) = xαυb for α : 0 ≤ |α| ≤ 3

and 0 ≤ b ≤ 3, with corresponding moment polynomials: fα,b(θ,x) = xαEε∼N (0,σ2)

[
(w · x+ ε)b

]
. These

polynomials can be expressed in closed form using Hermite polynomials (see Section B.2.2). For example,
f0,2(θ,x) =

(
(w · x)2 + σ2

)
.

Given these observation functions and moment polynomials, and data, the Polymom framework solves the
moment completion problem (Problem 6) followed by solution extraction (Section 4) to recover the parameters.
Further, we can guarantee that Polymom can recover parameters for this model when K ≤ D by showing that
Problem 6 can be solved exactly. Note that while no entry of the moment matrix is directly observed, each
observation gives us a linear constraint on the entries of the moment matrix. Let γp ∈ NP be the vector
with value 1 at position p and 0 elsewhere, then Ly(fα,1(θ)) =

∑P
p=1 E[xα+γp ]yγp

, and Ly(fα,2(θ)) =(
E[xα]σ2 +

∑P
p,q=1 E[xα+γp+γq ]yγp+γq

)
, etc. When K ≤ D, there are enough equations that this system

admits an unique solution for y.

Note that [15] recover parameters for this model by solving a series of low-rank tensor recovery problems,
which ultimately requires the computation of the same moments described above. In contrast, the Polymom
framework makes the dependence on moments upfront and takes care of the heavy-lifting in a problem-agnostic
manner. Furthermore, we can even obtain parameters outside the regime of [15]: with the above observation
functions and moment polynomials, we can recover parameters (with a certificate) .

B.2.2 Mixture of Gaussians

We now look atD-dimensional extensions to Example 2.1. Let the data be drawn from Gaussians with diagonal
covariance, x|z ∼ N (ξz, diag(cz)). The parameters of this model are θ∗k = (ξk, ck) ∈ R2D . The observable
functions are φα(x) := xα, and the moment polynomials are fα(θ) = E[xα] =

∏D
d=1 hα[d](ξ[d], c[d]),

where hα(ξ, c) =
∑bα/2c
i=0 aα,α−2iξ

α−2ici and aα,i be the absolute value of the coefficient of the degree i
term of the αth (univariate) Hermite polynomial. The first few are h1(ξ, c) = ξ, h2(ξ, c) = ξ2 + c, h3(ξ, c) =
ξ3 + 3ξc, h4(ξ, c) = ξ4 + 6ξ2c+ 3c2.

Using this set of φα and fα, Polymom will attempt to solve the SDP in Problem 7 and recover the parameters.
In this case however, the moment conditions are non-trivial and we cannot guarantee recovery of the true pa-
rameters. However, Polymom is guaranteed to recover parameters that match the moments and that minimizes
nuclear norm.

We can modify this model by introducing constraints: consider the case of 2D mixture where the mean param-
eters for all components lies on a parabola ξ1− ξ22 = 0. In this case, we just need to add constraints to Problem
7: y(1,0)+β − y(0,2)+β = 0 for all β ∈ N2 up to degree |β| ≤ 2r − 2.

By incorporating these contraints at estimation time, we can possibly identify the model parameters with less
moments. See Section C for more details.

B.2.3 Multiview Mixtures

Here we consider the three-view mixture model which has been well studied in [12, section 3.3]. We will
show that we can solve the model without explicit whitening, a transformation that has been shown to in-
troduce noise[16]. The model is a mixture of three conditionally independent arbitrary distributions pa-
rameterized by their conditional means: we have z ∼ Multinomialπ,xl|z ∼ pl(ξ

(l)
z ) where pl(ξ(l)z ) is

such that Exl|z[xl] = ξ. The parameters are θk = [ξ(1), ξ(2), ξ(3)]. Using the observation functions
φ = [x(1), x(2), x(3), x(1) ⊗ x(2), . . . , x(1) ⊗ x(2) ⊗ x(3)], we have the following moment polynomials,
f = [ξ(1), ξ(2), ξ(3), ξ(1) ⊗ ξ(2), . . . , ξ(1) ⊗ ξ(2) ⊗ ξ3].

The multiview mixture model is another model for which we can guarantee parameter recovery when K ≤ D.
To prove this is the case, we will again show that Problem 7 can be solved exactly. It suffices to consider just
the first P columns of the moment matrix M2, which are almost directly observable. As before, vecs(·) just
flattens a matrix into a vector.

MT
2 =


ξ1 ξ2 ξ3 vecs(ξ1⊗ξ2) vecs(ξ1⊗ξ3) vecs(ξ2⊗ξ3)

ξ1 Z2,0,0 Y1,1,0 Y1,0,1 Z2,1,0 Z2,0,1 Y1,1,1

ξ2 Y1,1,0 Z0,2,0 Y0,1,1 Z1,2,0 Y1,1,1 Z0,2,1

ξ3 Y1,0,1 Y0,1,1 Z0,0,2 Y1,1,1 Z1,0,2 Z0,1,2

 (16)

where Yα1,α3,α3 and Zα1,α3,α3 are both equal to Ly(ξ⊗α1
1 ⊗ ξ⊗α2

2 ⊗ ξ⊗α3
3 ), but are used to respectively

denote observed and unknown variables. However, this equation is only partially true as both sides contain the
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same set of values but the precise arrangements depends on where the minor matrix appears in the moment
matrix. We ignore this problem as it should be clear from the row and column labels. In the undercomplete
case, it is assumed that rank(U) = K ≤ min(P1, P2, P3), thus we can easily complete this matrix using
simple linear algebra in the exact case by repeatedly applying Lemma B.3 below. Generally, we may try to
complete the moment matrix by solving Problem 7 from these partial observations, provided that optimizing
with the nuclear norm recovers the true rank.

Lemma B.3 (low rank completion of missing corner). For any matrix Γ =

[
A B
C X

]
with a missing block X ,

where rank(Γ) = rank(A) = rank(B) = K and A ∈ RK×K , X = CA
−1

B uniquely completes Γ.

Proof. Because A contains the entire K elements basis, there exists unique Y,Z ∈ RK×K so that B = AY

and C = ZA. Similarly, X = ZB = CA
−1

B.

C Extensions

C.1 Constraints on parameters

Constraints on parameters is a common and important consideration in applications. While constraints can often
be addressed in maximum likelihood or maximum a prioterior learning using EM [17, see shared parameters],
it is less clear how to address constraints under the tensor decomposition approach because of its reliance
on special tensor structure and it is well-known that MME generally can give us parameters outside of the
parameter space even in the well-specified case.

Example C.1. Examples of constraints on parameters Some parameters are known: Gaussian with sparse
covariance matrix where we already know that some dimensions are uncorrelated; to solve a substitution cipher
using an HMM, the transitions matrix is a language model that is given.

Parameters are tied: transitions in an HMM might only depend on the relatively difference between states if
the states are ordered i.e. the transition matrix is Toeplitz.

Polytope constraints: some of our parameters might be probabilities: θ = [π1, . . . , πP , ξ1, . . .], πp ≥
0,
∑P
p=1 πp = 1 e.g. prior parameter in LDA.

Semialgebraic constraints: For some polynomial g ∈ R[θ], gi(θ∗k) ≥ 0, i = 1, . . . , I . Quite powerful, can
express things like discrete sets θi ∈ {0, 1}, elipsoids.

The obvious attempt is to project to the feasible set after computing an unconstrained estimation with MME.
But this approach has several serious issues. First, some constrained models are only identifiable after the
constraints are taken into account, which happens when the model has a lot of parameters and we cannot observe
correspondingly more moments. In this case, unconstrained estimation is useful only if we can characterize the
entire subset of the parameters space satisfying moment conditions, which is generally not possible in the
tensor decomposition approach. Second, we need to determine what projection to use. In the case of two
equal parameters, if one estimate is much more noisy than the other, it can be better to just ignore the more
noisy estimate than to project under the wrong metric (see Example C.3). Third and strangely, even in the case
when the first two issues are handled, it was observed by [18] for probablities parameters, that clipping to 0 is
empirically inferior compared to heuristics like taking the absolute value, which is not a projection.

Under the Polymom formulation, we can take constraints into account during estimation. The technique of
localizing matrix [3] in moment theory allows us to deal with semialgebraic constraints. Of course, the com-
putational complexity increases if the constraints are themselves complicated and high degree. Next, we define
the localization matrix, give an example, and then give a constrained version of the flat extension theorem.

Example C.2 (localizing matrix for an inequality constraint). Let θ = [c, ξ], so that θα = cα1ξα2 and
Ly(θα) = yα, and chose the monomials v2(θ) = [1, c, ξ, c2, cξ, ξ2]. Suppose that c is the variance and we
want to have constraint that c− 1 ≥ 0, then

M1((c− 1)y) =


1 c ξ

1 y1,0 − 1 y2,0 − y1,0 y1,1 − y1,0
c y2,0 − y1,0 y3,0 − y2,0 y2,1 − y2,0
ξ y1,1 − y0,1 y2,1 − y1,1 y1,2 − y0,2

 (17)

it is clear that a necessary condition for extracted solutions to satisfy the constraint c− 1 ≥ 0 is that M1((c−
1)y) � 0 since fTM1((c− 1)y)f = Ly(f(θ)2(c− 1)) ≥ 0.
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C.2 Noise and statistical efficiency

In the presense of noise Problem 7 may not be feasible and even if it was, it may not be ideal to exactly match
noisy moments. Furthermore, it is argued that higher order moments are too noisy to be useful, but there are
also more of them and they do contain more information about the model parameters as long as we can model
how noisy they are. We consider the problem with slack ε and a weighting matrix W � 0 ∈ RN×N modelling
how much noise is present in each constraint function. This effect is fairly well-known, and here is a very
simple example which shows that even much more noisy measurements can improve efficiency.

Example C.3 (efficient estimation). Suppose X ∼ N ([ξ, ξ],diag[σ2, cσ2]) and we would like to estimate the
mean parameter ξ by matching moments. Any estimators of the form ξ̂ = 1

T

∑T
t=1(γxt,1 + (1 − γ)xt,2) are

consistent and has risk

R = E
[
(ξ̂ − ξ)2

]
= E

(γ T∑
t=1

xt,2 − γξ + (1− γ)

T∑
t=1

xt,2 − (1− γ)ξ

)2
 (18)

= E

γ2

(
ξ − 1

T

T∑
t=1

xt,1

)2

+ (1− γ)2
(
ξ − 1

T

T∑
t=1

xt,2

)2
 (19)

=
1

T
(γ2σ2 + (1− γ)2cσ2) (20)

under the squared loss, and the efficient estimator would have γ = c−1
c

and a risk of σ
2

T
c2−c+1
c2

. For c = 10,

the risk for efficient estimation is 0.91σ
2

T
whereas for γ = 0.5, the risk is 2.75σ

2

T
.

minimize
g,y

C •M(y)

s.t. gn =
∑

α anαyα − E[φn(x)
gTWg ≤ ε
M(y) � 0

(21)

In the simplest case when W = IN , and ε = 0, Problem 21 is the same as Problem 7.

minimize
g,y

C •M(y)

s.t. gn =
∑

α anαyα − E[φn(x)]
W • F ≤ ε
M(y) � 0[
1 gT

g F

]
� 0

(22)

A good weighting matrix W should put more weights on moment conditions that can be estimated more
precisely. The asymptotically efficient weighting matrix suggested by the Generalized Method of Moments
[19] is

W
−1

= E
[
g([θk]Kk=1,x)g([θk]Kk=1,x)T

]
≈ 1

T

T∑
t=1

g([θk]Kk=1,x)g([θk]Kk=1,x)T (23)

Theorem 2 (Gen.MM is asymptotically efficient [19]). Let gn(θ,X) :=
∑
k fn(θk) − hn(X) so that

E[hn(X)] = E[φn(x)]. Let W
−1

= E[g(θ,X)g(θ,X)T] ≈ 1
T

∑T
t=1 g(θ,Xt)g(θ,Xt)

T Iterative
Gen.MM is efficient with this weighting matrix W.

D Separability

For conditional models, the coefficients of the moment polynomials can depend on the data but such depen-
dence can sometimes break the process of converting from component moment constraints to mixture moment
constraints. In this section, we define separability, which is a sufficient condition on what dependence is allowed
under Polymom and then we give some counterexamples.

Consider a mixture of linear regressions [20, 15], where the parameters θk = (wk, σ
2
k) are the slope and noise

variance for each component k. Then each data point x = [x, y] is drawn from component k by sampling x
from an unknown distribution independent of k and setting y = wkx + ε, where ε ∼ N (0, σ2

k). If we take
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observation function φb,c(x) = xbyc, then the corresponding fb,c(θ) depends on the unknown distribution
of x: for example, f1,2(θ) = E[x3]w + E[x]σ2. In contrast, for the mixture of Gaussians, we had f2(θ) =
µ2 + σ2, which only depends on the parameters.

However, not all is lost, since the key thing is that f1,2(θ) depends only on the distribution of x, which is
independent of the component k and furthermore can be estimated from data. More generally, we allow fn to
depend on x but in a restricted way. We say that fn(θ,x) is separable if E[fn(θ,x)] does not depend on the
parameters [θk]Kk=1 of the mixture generating x. In other words,

E[φn(x)] = E[fn(θ,x)] where for all k : Ex|z=k[f(θ; x)] = f(θ).E[fn(θ,x) | z = k] = E[fn(θ,x)] ∈ R[θ].
(24)

In this case, we can define fn(θ) := E[fn(θ,x)], and (3) is still valid. For the mixture of linear regressions,
we would define fb,c(θ,x) = xb Eε∼N (0,σ2)[(wx+ ε)c]. In this more general setup, the approximate moment
equations on T data points is 1

T

∑T
t=1[fn(θ,xt)] = 1

T

∑T
t=1 φn(xt).

An example of non-separability is a mixture of linear regressions where the variance is not a parameter and is
different across mixture components: θ = (w) and x = (x, y). Recall that E[xy2] =

∑K
k=1 πk(E[x3]w2

k +

E[x]σ2
k), but E[x3]w2

k + E[x]σ2
k cannot be written as E[fn(wk,x)] for any fn, since it depends on σ2

k. Thus,
this example falls outside our framework. In the simplest case, we can make fn(w,x) separable by introducing
σk as a parameter, but this is not always possible if the noise distribution is unknown or if σk(x) depends on
x. For example, if we have heteroskedastic noise, E[xa(y − w · x)] = 0 are valid moment constraints for
individual components, but it is not clear how to convert this to the mixture case.
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