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Tensor factorization

What is tensor (CP) factorization?
(Kolda and Bader 2009)

» Tensor analogue of matrix eigen-decomposition.

k
M = Zmu; X uj
i=1

e e R

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 2 /27



Tensor factorization

What is tensor (CP) factorization?

(Kolda and Bader 2009)

» Tensor analogue of matrix eigen-decomposition.

K
T = Zﬂ'iui ® uidu;
i—1

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015



Tensor factorization

What is tensor (CP) factorization?
(Kolda and Bader 2009)

» Tensor analogue of matrix eigen-decomposition.

k
T = Zmu,- ® uiQui+eR.
i=1

» Goal: Given T with noise, €R, recover factors u;.

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 2 /27



Tensor factorization

What is tensor (CP) factorization?
(Kolda and Bader 2009)

» Tensor analogue of matrix eigen-decomposition.

k
T = Z iU @ uiQui+eR.
i=1

» Goal: Given T with noise, €R, recover factors u;.

_ 1 ; 1+...+ 1+ z
1 +1+...+ 1+-

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 2 /27



Tensor factorization

Why tensor factorization?

» To solve multi-linear algebra problems.
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Tensor factorization

Why tensor factorization?

v

To solve multi-linear algebra problems.

» Parsing

» Cohen, Satta, and Collins 2013
» Knowledge base completion

» Chang et al. 2014

» Singh, Rocktéaschel, and Riedel 2015
» Topic modelling

» Anandkumar et al. 2012
» Community detection
» Anandkumar et al. 2013a
Learning latent variable graphical models
» Anandkumar et al. 2013b

» TODO: crowdsourcing

v

» TODO: others
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Tensor factorization

Existing tensor factorization algorithms

» Tensor power method (Anandkumar et al. 2013b)

» Analog of matrix power method.
» Sensitive to noise.
> Restricted to orthogonal tensors.
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Tensor factorization

Existing tensor factorization algorithms

» Tensor power method (Anandkumar et al. 2013b)

» Analog of matrix power method.
» Sensitive to noise.
> Restricted to orthogonal tensors.

» Alternating least squares (Comon, Luciani, and Almeida 2009;
Anandkumar, Ge, and Janzamin 2014)

» Sensitive to initialization.

» Both operate on the tensor directly.
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Tensor factorization

Our approach

» Objective: a fast robust algorithm.
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Tensor factorization

Our approach

» Objective: a fast robust algorithm.

» Approach: use existing fast and robust matrix algorithms.

. -$

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015

5 /27



Tensor factorization via matrix factorization Single matrix factorizations

Outline

Tensor factorization

Tensor factorization via matrix factorization
Single matrix factorizations

Non-orthogonal tensor factorization
Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 6 /27



Tensor factorization via matrix factorization Single matrix factorizations

Tensor factorization via single matrix factorization

T = 7['1U$_§3 + 7r2u§®3 + 7T3u§®3 4+ €R
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Tensor factorization via single matrix factorization

T = u$3 + u$® + ug?
l
T(Lhw) = (wWhe)u? + (wWiw)d? +  (wlug)ud?
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Tensor factorization via matrix factorization Single matrix factorizations

Tensor factorization via single matrix factorization

u? 3 + ug§3 +

T = u?3
1l
T(Lhw) = (Wu)ume + (W w)wu + (W u)usu;
> s 5
1 2 3

» Proposal: Eigen-decomposition on the projected matrix.
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Tensor factorization via matrix factorization

Single matrix factorizations

Sensitivity of single matrix projection

:1 +1 +1
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» If two eigenvalues are equal, corresponding eigenvectors are arbitrary.
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Tensor factorization via matrix factorization Single matrix factorizations

Sensitivity of single matrix projection
= 1 + 1 + 1

» If two eigenvalues are equal, corresponding eigenvectors are arbitrary.

» Problem: Eigendecomposition is very sensitive to the eigengap.

1
min(difference in eigenvalues)’

error in factors o
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11

Projections matter
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Tensor factorization via matrix factorization Single matrix factorizations

Projections matter

11

» How can we leverage multiple projections?
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T(LLw) = (W u)wmu + (W w)wu) +  (wy u3)usug
—_——— —— ~—— ——
M A1 A2t As1
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Tensor factorization via matrix factorization Simultaneous matrix factorizations

Enter simultaneous diagonalization

[ =1 n 1
T(LLw) = (W w)wmu + (W w)wu) +  (wy u3)usug
—_——— —— ~—— ——

M A1l A2t As1

[l 1 -1 =1
T(Lhw) = (wWwu)umu + (Ww)we + (W u)usu;
—_——— ——— —_——— ———

M A1l A1 Azl

» Projections share factors.
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Tensor factorization via matrix factorization Simultaneous matrix factorizations

Algorithm

» Algorithm: Simultaneously diagonalize projected matrices.

L
U=arg max Y _ off(U' M,U) off(A) =) Aj.
U =1 i#
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» Algorithm: Simultaneously diagonalize projected matrices.

L
U=arg max Y _ off(U' M,U) off(A) =) Aj.
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Tensor factorization via matrix factorization Simultaneous matrix factorizations

Algorithm

» Algorithm: Simultaneously diagonalize projected matrices.

L
U=arg max Y _ off(U' M,U) off(A) =) Aj.
U =1 i#

» Optimize using the Jacobi angles (Cardoso and Souloumiac 1996).

» Multiple projections proposed in Anandkumar, Hsu, and Kakade 2012,
but didn't use simultaneous diagonalization.
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Tensor factorization via matrix factorization Simultaneous matrix factorizations

Comparison with single matrix factorization

» Single matrix factorization depends on minimum eigengap.

1

error in factors oc — . S )
min; ; difference in eigenvalues
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Comparison with single matrix factorization

» Single matrix factorization depends on minimum eigengap.

1

error in factors oc — . S )
min; ; difference in eigenvalues

» Simultaneous matrix factorization depends on average eigengap.

1

error in factors oc — _ — .
min; j average difference in eigenvalues
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Comparison with single matrix factorization

» Single matrix factorization depends on minimum eigengap.

1

error in factors o<
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» Simultaneous matrix factorization depends on average eigengap.
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error in factors oc — I
min; ; Z/:l |)\i/ - )\j/|

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 14 /27



Tensor factorization via matrix factorization Oracle projections

Outline

Tensor factorization

Tensor factorization via matrix factorization

Oracle projections

Non-orthogonal tensor factorization
Empirical results

Conclusions

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 15 /27



Tensor factorization via matrix factorization Oracle projections

Oracle projections

(u;j). Then,

Theorem @ 1 1 1
Pick k projections along the factors I
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Tensor factorization via matrix factorization Random projections

Random projections

Theorem
Pick O(k log k) projections
randomly from the unit sphere.

Then, with probability > 1 — ¢, @ 1 1 1
[
[
[

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 18 / 27



Tensor factorization via matrix factorization Random projections

Random projections

Theorem
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Then, with probability > 1 — 9, @ 1 1 1
[
[
[

2

T min

A/ T
error in factors < O ( max) €

+ C(d)e
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Tensor factorization via matrix factorization Random projections

Random projections

Theorem
Pick O(k log k) projections
randomly from the unit sphere.

Then, with probability > 1 — 9, @ 1 1 1
[
[
[

2

T min

A/ T
error in factors < O ( max) €

+ C(d)e

» As good as having oracle
projections!

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015 18 / 27



Tensor factorization via matrix factorization Random projections

Final algorithm
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» Algorithm:

» Project tensor on to O(k log k) random vectors.
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Tensor factorization via matrix factorization Random projections

Final algorithm

» Algorithm:

» Project tensor on to O(k log k) random vectors.
()

» Recover approximate factors &i; * through simultaneous diagonalization.
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Final algorithm

» Algorithm:

» Project tensor on to O(k log k) random vectors.
» Recover approximate factors ﬂfo) through simultaneous diagonalization.
> Project tensor on to approximated factors.
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Tensor factorization via matrix factorization Random projections

Final algorithm

» Algorithm:

» Project tensor on to O(k log k) random vectors.
» Recover approximate factors ﬂfo) through simultaneous diagonalization.
> Project tensor on to approximated factors.

» Return factors &i; from simultaneous diagonalization.
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Naive approach: whitening non-orthogonal factors
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Non-orthogonal tensor factorization

Naive approach: whitening non-orthogonal factors

» Use a whitening transformation to orthogonalize tensor (Anandkumar
et al. 2013b).

» |s a major source of errors itself (Souloumiac 2009).
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Non-orthogonal tensor factorization

Non-orthogonal simultaneous diagonalization

L] -1 n 1
T(LLw) = (W u)wmu + (W w)wu) +  (wy u3)usug
~—_——— —— ~—— ——

M A1 A21 As1

» No unique non-orthogonal factorization for a single matrix.
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] -1 . | <1
T(LLw) = (W u)wmu + (W w)wu) +  (wy u3)usug
~—_——— —— ~—— ——

M A1l A21 As1

] 1 -1 =1
T Lw) = (W,Tul) ululT + (W,TU2) uzu2T + (W,TU3) u;<;u3T
—_——— ——— —_——— ———

M, A1y A2 Az

» No unique non-orthogonal factorization for a single matrix.

» > 2 matrices have a unique non-orthogonal factorization.
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Non-orthogonal tensor factorization

Non-orthogonal simultaneous diagonalization

] -1 . | <1
T(Lw) = (W u)wmul + (W w)wu) +  (wy u3)usug
~—_——— —— ~—— ——

M A1l A2t As1

] 1 -1 =1
T Lw) = (W,Tul) u1u1T + (W,TU2) uzu2T + (W,TU3) U3u3T
—_——— ——— —_——— ———

M, A1y Aoy Az

» No unique non-orthogonal factorization for a single matrix.
» > 2 matrices have a unique non-orthogonal factorization.

» Note: )\; are factor weights, not eigenvalues.
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Non-orthogonal tensor factorization

Non-orthogonal simultaneous diagonalization

» Algorithm: Simultaneously diagonalize projected matrices.

L
U=arg max > off(UMU™T)  off(A) =Y A2
U =1 i#j
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» Algorithm: Simultaneously diagonalize projected matrices.
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U =1 i#j

» U are not constrained to be orthogonal.

Kuleshov, Chaganty, Liang (Stanford University) Tensor Factorization May 8, 2015

23 /27



Non-orthogonal tensor factorization

Non-orthogonal simultaneous diagonalization

» Algorithm: Simultaneously diagonalize projected matrices.

L
U=arg max > off(UMU™T)  off(A) =Y A2
U =1 i#j

» U are not constrained to be orthogonal.
» Optimize using the QR1JD algorithm (Souloumiac 2009).
» Only guaranteed to have local convergence.
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Non-orthogonal tensor factorization

Results: Non-orthogonal simultaneous diagonalization

Theorem (Oracle projections)
Pick k projections along the factors (u;). Then,

2
min

T
error in factors < O <||U_T||§ max) €,

where U = [u1|- - - |uk].
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Conclusions

Conclusions

» Reduce tensor problems to matrix ones with é(k) random projections.
» Robust to noise with general support for non-orthogonal factors.

» Competitive empirical performance.

» Questions?
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