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Problem: existing automatic metrics are biased.

(a) Automatic metric correlations
on a dialog generation task
(Novikova et al., 2017).
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Correlations on CNN/DailyMail using the Edit prompt
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(b) Automatic metric correlations differ
significantly across systems.
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Correlations between automatic metrics (e.g.
ROUGE or BLEU) and human judgments are
poor and vary significantly between systems,
making automatic evaluation hard to interpret
and biased.

I Even if automatic metrics correlate well with human judgment at a system-level,
they may have poor instance-level correlation.

I We find this is partially explained by the “low recall” of automatic metrics: many
examples are systematically scored poorly.

I As a result, it is easy to improve the automatic metric without improving human
scores and vice versa [?].

Average human judgment is unbiased

I Let S(x) be the output produced by a system S on input x ∈ X .

I We can measure the quality of z = (x,S(x)) ∈ Z according to humans:

f (z)
def
= E[Y (z)], where Y (z) is any one person’s judgment.

I We’re interested in a system’s mean quality : µ
def
= Ez [f (z)].

I Any method that matches µ in expectation is unbiased.

I Given n samples of human judgments, y (i) = Y (z(i)), the simple mean estimator
is unbiased:

µ̂mean
def
=

1

n

n∑
i=1

y (i).

Can we debias automatic metrics with human
feedback?
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I An equivalent problem is: can we decrease the cost of unbiased human
evaluation with an automatic metric?

I The key idea is that the difference between the correlated metric and human
judgment will have less variance if they are correlated.

I The control variates estimator exploits this property:

µ̂cv
def
=

1

n

n∑
i=1

y (i) − αg(z(i)),

where α = Cov(f (z), g(z)) optimally scales the automatic metric.

The control-variates estimator is the best one
can do*: its performance fundamentally limits
the cost-savings of using automatic metrics in
unbiased evaluation.

*: formally, we prove that among all unbiased estimators using only y (i) and g(z(i)), and for all

distributions with a given annotator variance, γ
def
= σ2

a/σ
2
f , and metric correlation, ρ, no other

estimator has a lower worst-case variance than µ̂cv.

Cost savings depend only on automatic metric
correlation and annotator variance

I The cost of human evaluation
can be reduced by decreasing
variance and thus decreasing
the number of samples required.

I We measure this using data
efficiency, the ratio of the
variance of µ̂mean and µ̂cv:

DE
def
=

Var(µ̂mean)

Var(µ̂cv)

=
1 + γ

1− ρ2 + γ
.

0.00 0.25 0.50 0.75 1.00
Normalized annotator variance (γ)

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

om
at

ic
m

et
ri

c
co

rr
el

at
io

n
(ρ

)

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
e

da
ta

effi
ci

en
cy

Tasks: text summarization and question answering

(a) MS MARCO (γ = 0.95) (b) CNN/Daily Mail (γ = 0.36–1.23)

Post-editing reduces annotator variance by a
factor of ∼3 compared to Likert rating.

We are limited to modest data efficiencies
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seq2seq on CNN/DailyMail using the Edit prompt
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fastqa_ext on MSMARCO using the AnyCorrect prompt
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Both automatic metric correlation and
annotator variance are important for data
efficiency and current metrics and annotation
interfaces severely limit possible data efficiency.

The paths forward?

I Theory shows that we can’t reduce the costs of unbiased evaluation
without dramatically improving automatic metrics (probably hard) and
annotation prompts (less explored).

I Add inductive bias in how people evalaute output?
I Decompose evaluation so that we can reuse components of human

judgment?
I Use stable comparison-based ranking metrics?
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