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Abstract
Recent work on the method of moments enable
consistent parameter estimation, but only for cer-
tain types of latent-variable models. On the other
hand, pure likelihood objectives, though more
universally applicable, are difficult to optimize.
In this work, we show that using the method of
moments in conjunction with composite likeli-
hood yields consistent parameter estimates for a
much broader class of discrete directed and undi-
rected graphical models, including loopy graphs
with high treewidth. Specifically, we use tensor
factorization to reveal information about the hid-
den variables. This allows us to construct convex
likelihoods which can be globally optimized to
recover the parameters.

1. Introduction
Latent-variable graphical models provide compact repre-
sentations of data and have been employed across many
fields (Ghahramani & Beal, 1999; Jaakkola & Jordan,
1999; Blei et al., 2003; Quattoni et al., 2004; Haghighi &
Klein, 2006). However, learning these models remains a
difficult problem due to the non-convexity of the negative
log-likelihood. Local methods such as expectation maxi-
mization (EM) are the norm, but are susceptible to local
optima.

Recently, unsupervised learning techniques based on the
spectral method of moments have offered a refreshing per-
spective on this learning problem (Mossel & Roch, 2005;
Hsu et al., 2009; Bailly et al., 2010; Song et al., 2011;
Anandkumar et al., 2011; 2012b;a; Hsu et al., 2012; Balle
& Mohri, 2012). These methods exploit the linear algebraic
properties of the model to factorize moments of the ob-
served data distribution into parameters, providing strong
theoretical guarantees. However, they apply to a limited set
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Figure 1. Overview of our approach: (i) we use tensor factoriza-
tion to learn the conditional moments for each hidden variable;
(ii) we optimize a composite likelihood to recover the hidden
marginals; and (iii) we optimize another likelihood objective to
the model parameters. Both likelihood objectives are convex.

of models, and are thus not as broadly applicable as EM.

In this paper, we show that a much broader class of dis-
crete directed and undirected graphical models can be con-
sistently estimated: specifically those in which each hidden
variable has three conditionally independent observed vari-
ables (“views”). Our key idea is to leverage the method
of moments, not to directly provide a consistent parame-
ter estimate as in previous work, but as constraints on a
likelihood-based objective. Notably, our method applies to
latent undirected log-linear models with high treewidth.

The essence of our approach is illustrated in Figure 1,
which contains three steps. First, we identify three views
for each hidden variable hi (for example, xa1 , xb1 and xa3
are conditionally independent given h1) and use the tensor
factorization algorithm of Anandkumar et al. (2013) to es-
timate the conditional moments P(xai | hi) and P(xbi | hi)
for each i (Section 3). Second, we optimize a compos-
ite marginal likelihood to recover the marginals over sub-
sets of hidden nodes (e.g., P(h2, h3, h4)). Normally, such
a marginal likelihood objective would be non-convex, but
given the conditional moments, we obtain a convex objec-
tive, which can be globally optimized using EM (see Sec-
tions 4 and 4.2). So far, our method has relied only on the
conditional independence structure of the model and ap-
plies generically to both directed and undirected models.
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The final step of turning hidden marginals into model pa-
rameters requires some specialization. In the directed case,
this is simple normalization; in the undirected case, we
need to solve another convex optimization problem (Sec-
tion 5).

2. Setup
Let G be a discrete graphical model with observed variables
x = (x1, . . . , xL) and hidden variables h = (h1, . . . , hM ).
We assume that the domains of the variables are xv ∈ [d]
for all v ∈ [L] and hi ∈ [k] for all i ∈ [M ], where [n] =
{1, . . . , n}. Let X , [d]L and H , [k]M be the joint
domains of x and h, respectively.

For undirected models G, let G denote a set of cliques,
where each clique C ⊆ x∪h is a subset of nodes. The joint
distribution is given by an exponential family: pθ(x,h) ∝∏
C∈G exp(θ>φC(xC ,hC)), where θ is the parameter vec-

tor, and φC(xC ,hC) is the local feature vector which only
depends on the observed (xC) and hidden (hC) variables in
clique C. Also define N (a) = {b 6= a : ∃C ⊇ {a, b}} to be
the neighbors of variable a.

For directed models G, define pθ(x,h) =
∏
a∈x∪h pθ(a |

Pa(a)), where Pa(a) ⊆ x ∪ h are the parents of a variable
a. The parameters θ are the conditional probability tables
of each variable, and the cliques are G = {{a} ∪ Pa(a) :
a ∈ x ∪ h}.

Problem statement This paper focuses on the problem
of parameter estimation: We are given n i.i.d. examples of
the observed variables D = (x(1), . . . ,x(n)), where each
x(i) ∼ pθ∗ for some true parameters θ∗. Our goal is to
produce a parameter estimate θ̂ that approximates θ∗.

The standard estimation procedure is maximum likelihood:

Lunsup(θ) ,
∑
x∈D

log pθ(x) =
∑
x∈D

log
∑
h∈H

pθ(x,h). (1)

Maximum likelihood is statistically efficient, but in general
computationally intractable because marginalizing over
hidden variables h yields a non-convex objective. In prac-
tice, one uses local optimization procedures (e.g., EM or L-
BFGS) on the marginal likelihood, but these can get stuck
in local optima. We will later return to likelihoods, but let
us first describe a method of moments approach for param-
eter estimation. To do this, let’s introduce some notation.

Notation We use the notation [·] to indicate indexing; for
example, M [i] is the i-th row of a matrix M and M [i, j]
is the (i, j)-th element of M . For a tensor T ∈ Rd×···×d
and a vector i = (i1, . . . , i`), define the projection T [i] =
T [i1, . . . , i`].

We use ⊗ to denote the tensor product: if u ∈ Rd, v ∈ Rk,

then u⊗ v ∈ Rd×k. For an `-th order tensor T ∈ Rd×...×d
and vectors v1, · · · , v` ∈ Rd, define the application:

T (v1, · · · , v`) =
∑
i

T [i]v1[i1] · · · v`[i`].

Analogously, for matrices M1 ∈ Rd×k, · · · ,M` ∈ Rd×k:

T (M1, · · · ,M`)[j] =
∑
i

T [i]M1[i1, j1] · · ·M`[i`, j`].

We will use P(·) to denote various moment tensors con-
structed from the true data distribution pθ∗(x,h):

Mi , P(xi), Mij , P(xi, xj), Mijk , P(xi, xj , xk).

Here, Mi,Mij ,Mijk are tensors of orders 1, 2, 3 in
Rd,Rd×d,Rd×d×d. Next, we define the hidden marginals:

Zi , P(hi), Zij , P(hi, hj), Zijk , P(hi, hj , hk).

These are tensors of orders 1, 2, 3 in Rk,Rk×k,Rk×k×k.
Finally, we define conditional moments O(v|i) , P(xv |
hi) ∈ Rd×k for each v ∈ [L] and i ∈ [M ].

2.1. Assumptions

In this section, we state technical assumptions that hold for
the rest of the paper, but that we feel are not central to our
main ideas. The first one ensures that all realizations of
each hidden variable are possible:
Assumption 1 (Non-degeneracy). The marginal distribu-
tion of each hidden variable hi has full support: P(hi) � 0.

Next, we assume the graphical model only has conditional
independences given by the graph:
Assumption 2 (Faithful). For any hidden variables
a, b, c ∈ h such that an active trail1 connects a and b con-
ditioned on c, we have that a and b are dependent given
c.

Finally, we assume the graphical model is in a canonical
form in which all observed variables are leaves:
Assumption 3 (Canonical form). For each observed vari-
able xv , there exists exactly one C ∈ G such that C =
{xv, hi} for some hidden node hi.

The following lemma shows that this is not a real assump-
tion (see the appendix for the proof):
Lemma 1 (Reduction to canonical form). Every graphical
model can be transformed into canonical form. There is a
one-to-one correspondence between the parameters of the
transformed and original models.

Finally, for clarity, we will derive our algorithms using ex-
act moments of the true distribution pθ∗ . In practice, we
would use moments estimated from data D.

1See Koller & Friedman (2009) for a definition. We do not
condition on observed variables.
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3. Bottlenecks
We start by trying to reveal some information about the
hidden variables that will be used by subsequent sec-
tions. Specifically, we review how the tensor factorization
method of Anandkumar et al. (2013) can be used to recover
the conditional moments O(v|i) , P(xv | hi). The key no-
tion is that of a bottleneck:
Definition 1 (Bottleneck). A hidden variable hi is said to
be a bottleneck if (i) there exists three observed variables
(views), xv1 , xv2 , xv3 , that are conditionally independent
given hi (Figure 2(a)), and (ii) each O(v|i) , P(xv | hi) ∈
Rd×k has full column rank k for each v ∈ {v1, v2, v3}. We
say that a subset of hidden variables S ⊆ h is bottlenecked
if every h ∈ S is a bottleneck. We say that a graphical
model G is bottlenecked if all its hidden variables are bot-
tlenecks.

For example, in Figure 1, xa1 , x
b
1, x

a
2 are views of the bot-

tleneck h1, and xa2 , x
b
2, x

b
1 are views of the bottleneck h2.

Therefore, the clique {h1, h2} is bottlenecked. Note that
views are allowed to overlap.

The full rank assumption on the conditional moments
O(v|i) = P(xv | hi) ensures that all states of hi “behave
differently.” In particular, the conditional distribution of
one state cannot be a mixture of that of other states.

Anandkumar et al. (2012a) provide an efficient tensor fac-
torization algorithm for estimating P(xv | hi):
Theorem 1 (Tensor factorization). Let hi ∈ h be a bot-
tleneck with views xv1 , xv2 , xv3 . Then there exists an al-
gorithm GETCONDITIONALS that returns consistent esti-
mates of O(v|i) for each v ∈ {v1, v2, v3} up to relabeling
of the hidden variables.

To simplify notation, consider the example in Figure 2(a)
where h1 = 1, v1 = 1, v2 = 2, v3 = 3. The observed
moments M12,M23,M13 and M123 can be factorized as
follows:

Mvv′ =
∑
h

π(1)[h]O(v|1)>[h]⊗O(v′|1)>[h]

M123 =
∑
h

π(1)[h]O(1|1)>[h]⊗O(2|1)>[h]⊗O(3|1)>[h].

The GETCONDITIONALS algorithm first computes a
whitening matrix W ∈ Rd×k such that W>M12W =
Ik×k, and uses W to transform M123 into a symmetric
orthogonal tensor. Then a robust tensor power method is
used to extract the eigenvectors of the whitened M123; un-
whitening yields the columns ofO(3|1) (up to permutation).
The other conditional moments can be recovered similarly.

The resulting estimate ofO(v|i) based on n data points con-
verges at a rate of n−

1
2 with a constant that depends poly-

nomially on σk(O(v|i))−1, the inverse of the k-th largest
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Figure 2. (a) A bottleneck h1 has three conditionally independent
views x1, x2, x3. (b) A bidependent subset S has exclusive views
{x1, x2, x3, x4}.

singular value of O(v|i). Note that σk(O(v|i)) can become
quite small if hi and xv are connected via many intermedi-
ate hidden variables.2

The tensor factorization method attacks the heart of the
non-convexity in latent-variable models, providing some
information about the hidden variables in the form of
the conditional moments O(v|i) = P(xv | hi). Note
that GETCONDITIONALS only examines the conditional
independence structure of the graphical model, not its
parametrization.

If i is the single parent of v (e.g., P(xa1 | h1) in Figure 1),
then this conditional moment is a parameter of the model,
but this is in general not the case (e.g., P(xa2 | h1)). Fur-
thermore, there are other parameters (e.g., P(h4 | h2, h3))
which we do not have a handle on yet. In general, there
is a gap between the conditional moments and the model
parameters, which we will address in the next two sections.

4. Recovering hidden marginals
Having recovered conditional moments O(v|i) , P(xv |
hi), we now seek to compute the marginal distribution of
sets of hidden variables ZS , P(hS).

Example To gain some intuition, consider the directed
grid model from Figure 1. We can express the observed
marginalsM12 , P(xa1 , x

a
2) ∈ Rd×d as a linear function of

the hidden marginals Z12 , P(h1, h2) ∈ Rk×k, where the
linear coefficients are based on the conditional moments
O(1|1), O(2|2) ∈ Rd×k:

M12 = O(1|1)Z12O
(2|2)>.

We can then solve for Z12 by matrix inversion:

Z12 = O(1|1)†M12O
(2|2)†>.

2To see this, suppose h1 has a view xv via a chain: h1 −
h2 · · · − ht − xv . In this example, if σk(P(hi+1 | hi)) = ak for
each i = 1, · · · , t− 1, then σk(O

(v|1)) = atkσk(O
(v|t)).
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4.1. Exclusive views

For which subsets of hidden nodes can we recover the
marginals? The following definition offers a characteriza-
tion:

Definition 2 (Exclusive views). Let S ⊆ h be a subset of
hidden variables. We say hi ∈ S has an exclusive view xv
if the two conditions hold: (i) there exists some observed
variable xv which is conditionally independent of the oth-
ers S\{hi} given hi (Figure 2(b)), and (ii) the conditional
moment matrix O(v|i) , P(xv | hi) has full column rank
k and can be recovered. We say that S has the exclusive
views property if every hi ∈ S has an exclusive view.

Estimating hidden marginals We now show that if a
subset of hidden variables S has the exclusive views prop-
erty, then we can recover the marginal distribution P(hS).
Consider any S = {hi1 , . . . , him} with the exclusive views
property. Let xvj be an exclusive view for hij in S and de-
fine V = {xv1 , . . . , xvm}. By the exclusive views property,
the marginal over the observed variables P(xV) factorizes
according to the marginal over the hidden variables P(hS)
times the conditional moments:

MV , P(xV)

=
∑
hS

P(hS)P(xv1 | hi1) · · ·P(xvm | him)

= ZS(O(v1|i1), . . . , O(vm|im))

= ZS(O),

where O = O(v1|i1)⊗ · · · ⊗O(vm|im) is the tensor product
of all the conditional moments. Vectorizing, we have that
ZS ∈ Rkm , MV ∈ Rdm , and O ∈ Rdm×km . Since each
O(v|i) has full column rank k, the tensor product O has full
column rank km. Succinctly, MV (which can be estimated
directly from data) is a linear function of ZS (what we seek
to recover). We can solve for the hidden marginals ZS sim-
ply by multiplying MV by the pseudoinverse of O:

ZS = MV(O(v1|i1)†, · · · , O(vm|im)†).

Algorithm 1 summarizes the procedure, GETMARGINALS.
Given ZS , the conditional probability tables for S can eas-
ily be obtained via renormalization.

Theorem 2 (Hidden marginals from exclusive views). If
S ⊆ x is a subset of hidden variables with the ex-
clusive views property, then Algorithm 1 recovers the
marginals ZS = P(hS) up to a global relabeling of
the hidden variables determined by the labeling from
GETCONDITIONALS.

Relationship to bottlenecks The bottleneck property al-
lows recovery of conditional moments, and the exclusive

Algorithm 1 GETMARGINALS (pseudoinverse)
Input: Hidden subset S = {hi1 , . . . , him} with exclusive

views V = {xv1 , . . . , xvm} and conditional moments
O(vj |ij) = P(xvj | hij ).

Output: Marginals ZS = P(hS).
Return ZS ←MV(O(v1|i1)†, . . . , O(vm|im)†).

views property allows recovery of hidden marginals. But
we will now show that the latter property is in fact implied
by the former property for special sets of hidden variables,
which we call bidependent sets (in analogy with bicon-
nected components), in which conditioning on one variable
does not break the set apart:

Definition 3 (Bidependent set). We say that a subset of
nodes S is bidependent if conditioned on any a ∈ S, there
is an active trail between any other two nodes b, c ∈ S.

Note that all cliques are bidependent, but bidepen-
dent sets can have more conditional independences (e.g.,
{h1, h2, h3} in Figure 2(b)). This will be important in Sec-
tion 5.1.

Bidependent sets are significant because they guarantee ex-
clusive views if they are bottlenecked:

Lemma 2 (Bottlenecked implies exclusive views). Let S ⊆
h be a bidependent subset of hidden variables. If S is bot-
tlenecked, then S has the exclusive views property.

Proof. Let S be a bidependent subset and fix any h0 ∈ S.
Since h0 is a bottleneck, it has three conditionally indepen-
dent views, say x1, x2, x3 without loss of generality. For
condition (i), we will show that at least one of the views
is conditionally independent of S\{h0} given h0. For the
sake of contradiction, suppose that each observed variable
xi is conditionally dependent on some hi ∈ S\{h0} given
h0, for i ∈ {1, 2, 3}. Then conditioned on h0, there is an
active trail between h1 and h2 because S is biconnected.
This means there is also an active trail x1 − h1 − h2 − x2

conditioned on h0. Since the graphical model is faithful
by assumption, we have x1 6⊥ x2 | h0, contradicting the
fact that x1 and x2 are conditionally independent given
h0. To show condition (ii), assume, without loss of gen-
erality, that x1 is an exclusive view. Then we can recover
O(1|0) = P(x1 | h0) via GETCONDITIONALS.

Remarks. Note that having only two independent views
for each hi ∈ S is sufficient for condition (i) of the exclu-
sive views property, while three is needed for condition (ii).
The bottleneck property (Definition 1) can also be relaxed
if some cliques share parameters (see examples below).

Our method extends naturally to the case in which the ob-
served variables are real-valued (xv ∈ Rd), as long as the
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Figure 3. (a) and (b): graphical models that satisfy the exclusive
views property; (c) a graphical model that does not.

hidden variables remain discrete. In this setting, the con-
ditional moments O(v|i) , E(xv | hi) ∈ Rd×k would no
longer be distributions but general rank k matrices.

Example: hidden Markov model. In the HMM (Figure
3(a)), h2 is a bottleneck, so we can recover O , P(x2 |
h2). While the first hidden variable h1 is not a bottle-
neck, it still has an exclusive view x1 with respect to the
clique {h1, h2}, assuming parameter sharing across emis-
sions (P(x1 | h1) = O).

Example: latent tree model. In the latent tree model
(Figure 3(b)), h1 is not directly connected to an observed
variable, but it is still a bottleneck, with views xa2 , x

a
3 , x

a
4 ,

for example. The clique {h1, h2} has exclusive views
{xa2 , xa3}.

Non-example In Figure 3(c), h1 does not have exclusive
views. Without parameter sharing, the techniques in this
paper are insufficient. In the special case where the graphi-
cal model represents a binary-valued noisy-or network, we
can use the algorithm of Halpern & Sontag (2013), which
first learns h2 and subtracts off its influence, thereby mak-
ing h1 a bottleneck.

4.2. Composite likelihood

So far, we have provided a method of moments estima-
tor which used (i) tensor decomposition to recover condi-
tional moments and (ii) matrix pseudoinversion to recover
the hidden marginals. We will now improve statistical ef-
ficiency by replacing (ii) with a convex likelihood-based
objective.

Of course, optimizing the original marginal likelihood
(Equation 1) is subject to local optima. However, we make

two changes to circumvent non-convexity: The first is that
we already have the conditional moments from tensor de-
composition, so effectively a subset of the parameters are
fixed. However, this alone is not enough, for the full likeli-
hood is still non-convex. The second change is that we will
optimize a composite likelihood objective (Lindsay, 1988)
rather than the full likelihood.

Consider a subset of hidden nodes S = {hi1 , . . . , him},
with exclusive views V = {xv1 , . . . , xvm}. The expected
composite log-likelihood over xV given parameters ZS ,
P(hS) with respect to the true distributionMV can be writ-
ten as follows:

Lcl(ZS) , E[logP(xV)]

= E[log
∑
hS

P(hS)P(xV | hS)]

= E[logZS(O(v1|i1)[xv1 ], · · · , O(vm|im)[xvm ])]

= E[logZS(O[xV ])]. (2)

The final expression is an expectation over the log of a lin-
ear function of ZS , which is concave in ZS . Unlike maxi-
mum likelihood in fully-observed settings, we do not have
a closed-form solution, so we use EM to optimize it. How-
ever, since the function is concave, EM is guaranteed to
converge to the global maximum. Algorithm 2 summarizes
our algorithm.

Algorithm 2 GETMARGINALS (composite likelihood)
Input: Hidden subset S = {hi1 , . . . , him} with exclusive

views V = {xv1 , . . . , xvm} and conditional moments
O(vj |ij) = P(xvj | hij ).

Output: Marginals ZS = P(hS).
Return ZS = arg maxZS∈∆km−1

E[logZS(O[xV ])].

4.3. Statistical efficiency

We have proposed two methods for estimating the hidden
marginals ZS given the conditional moments O, one based
on computing a simple pseudoinverse, and the other based
on composite likelihood. Let Ẑpi

S denote the pseudoinverse
estimator and Ẑcl

S denote the composite likelihood estima-
tor.3

The Cramér-Rao lower bound tells us that maximum like-
lihood yields the most statistically efficient composite es-
timator for ZS given access to only samples of xV .4 Let
us go one step further and quantify the relative efficiency

3For simplicity, assume that O is known. In practice, O would
be estimated via tensor factorization.

4Of course, we could improve statistical efficiency by maxi-
mizing the likelihood of all of x, but this would lead to a non-
convex optimization problem.
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of the pseudoinverse estimator compared to the composite
likelihood estimator.

Abusing notation slightly, think of MV as just a flat multi-
nomial over dm outcomes andZS as a multinomial over km

outcomes, where the two are related by O ∈ Rdm×km . We
will not need to access the internal tensor structure of MV
and ZS , so to simplify the notation, let m = 1 and define
µ = MV ∈ Rd, z = ZS ∈ Rk, and O = O ∈ Rd×k. The
hidden marginals z and observed marginals µ are related
via µ = Oz.

Note that z and µ are constrained to lie on simplexes ∆k−1

and ∆d−1, respectively. To avoid constraints, we reparam-
eterize z and µ using z̃ ∈ Rk−1 and µ̃ ∈ Rd−1:

µ =

[
µ̃

1− 1>µ̃

]
z =

[
z̃

1− 1>z̃

]
.

In this representation, µ̃ and z̃ are related as follows,[
µ̃

1− 1>µ̃

]
=

[
O¬d,¬k O¬d,k
Od,¬k Od,k

] [
z̃

1− 1>z̃

]
µ̃ = (O¬d,¬k −O¬d,k1>)︸ ︷︷ ︸

,Õ

z̃ +O¬d,k.

The pseudoinverse estimator is defined as ̂̃zpi
= Õ†(̂̃µ −

O¬d,k), and the composite likelihood estimator is given bŷ̃zcl
= arg maxz̃ Ê[`(x; z̃)], where `(x; z̃) = log(µ[x]) is

the log-likelihood function.

First, we compute the asymptotic variances of the two esti-
mators.

Lemma 3 (Asymptotic variances). The asymptotic vari-

ances of the pseudoinverse estimator ̂̃zpi
and composite

likelihood estimator ̂̃zcl
are:

Σpi = Õ†(D̃ − µ̃µ̃>)Õ†>,

Σcl =
(
Õ>(D̃−1 + d̃−111>)Õ

)−1

,

where D̃ , diag(µ̃) and d̃ , 1− 1>µ̃.

Next, let us compare the relative efficiencies of the two es-
timators: epi , 1

k−1 tr(Σcl(Σpi)−1). From the Cramér-Rao
bound (van der Vaart, 1998), we know that Σcl � Σpi. This
implies that the relative efficiency, epi, lies between 0 and 1,
and when epi = 1, the pseudoinverse estimator is said to be
(asymptotically) efficient. To gain intuition, let us explore
two special cases:

Lemma 4 (Relative efficiency when Õ is invertible). When
Õ is invertible, the asymptotic variances of the pseudoin-
verse and composite likelihood estimators are equal, Σcl =
Σpi, and the relative efficiency is 1.

10−510−410−310−210−1100

ε
10−2

10−1

100

101

‖θ
−
θ̂‖

2

Pseudoinverse
Composite likelihood

Figure 4. Comparison of parameter estimation error (‖θ̂ − θ‖2)
versus error in moments (ε) for a hidden Markov model with k =
2 hidden and d = 5 observed values. Empirical moments M̂123

were generated by adding Gaussian noise, N (0, εI), to expected
moments M123. Results are averaged over 400 trials.

Lemma 5 (Relative efficiency with uniform observed
marginals). Let the observed marginals µ be uniform: µ =
1
d1. The efficiency of the pseudoinverse estimator is:

epi = 1− 1

k − 1

‖1U‖2
1 + ‖1U‖2

(
1− 1

d− ‖1U‖2
)
, (3)

where 1U , ÕÕ†1, the projection of 1 onto the column
space of Õ. Note that 0 ≤ ‖1U‖22 ≤ k − 1.

When ‖1U‖2 = 0, the pseudoinverse estimator is efficient:
epi = 1. When ‖1U‖2 > 0 and d > k, the pseudoinverse
estimator is strictly inefficient. In particular, if ‖1U‖22 =
k − 1, and we get:

epi = 1− 1

k

(
1− 1

1 + d− k

)
. (4)

Based on Equation 3 and Equation 4, we see that the pseu-
doinverse gets progressively worse compared to the com-
posite likelihood as the gap between k and d increases for
the special case wherein the observed moments are uni-
formly distributed. For instance, when k = 2 and d → ∞,
the efficency of the pseudolikelihood estimator is half that
of the composite likelihood estimator. Empirically, we ob-
serve that the composite likelihood estimator also leads to
more accurate estimates in general non-asymptotic regimes
(see Figure 4).

5. Recovering parameters
We have thus far shown how to recover the conditional mo-
ments O(v|i) = P(xv | hi) for each exclusive view xv of
each hidden variable hi, as well as the hidden marginals
ZS = P(hS) for each bidependent subset of hidden vari-
ables S. Now all that remains to be done is to recover the
parameters.
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Figure 5. Example: undirected grid model where each hidden
variable has two conditionally independent observations. This
model has high treewidth, but we can estimate it efficiently us-
ing pseudolikelihood.

Since our graphical model is in canonical form (Assump-
tion 3), all cliques C ∈ G either consist of hidden vari-
ables hC or are of the form {xv, hi}. The key observation
is that the clique marginals are actually sufficient statis-
tics of the model pθ. How we turn these clique marginals
{P(xC ,hC)}C∈G into parameters θ depends on the exact
model parametrization.

For directed models, the parameters are simply the local
conditional tables pθ(a | Pa(a)) for each clique C = {a} ∪
Pa(a). These conditional distributions can be obtained by
simply normalizing ZC for each assignment of Pa(a).

For undirected log-linear models, the canonical parameters
θ cannot be obtained locally, but we can construct a global
convex optimization problem to solve for θ. Suppose we
were able to observe h. Then we could optimize the super-
vised likelihood, which is concave:

Lsup(θ) , E(x,h)∼pθ∗ [log pθ(x,h)]

= θ>

(∑
C∈G

E[φ(xC ,hC)]

)
−A(θ). (5)

Of course we don’t have supervised data, but we do have
the marginals P(xC ,hC), from which we can easily com-
pute the expected features:

µC , E[φ(xC ,hC)] =
∑
xC,hC

P(xC ,hC)φ(xC ,hC). (6)

Therefore, we can optimize the supervised likelihood ob-
jective without actually having any supervised data! In the
finite data regime, the method of moments yields the esti-
mate µ̂mom

C which approximates the true µC . In supervised
learning, we obtain a different estimate µ̂sup

C of µC based
on an empirical average over data points. In the limit of
infinite data, both estimators converge to µC .

Algorithm 3 GETPARAMETERS

Input: Conditional momentsO(v|i) = P(xv | hi) and hid-
den marginals ZS = P(hS).

Output: Parameters θ.
if G is directed then

Normalize P(a,Pa(a)) for a ∈ x ∪ h.
else if G is undirected with low treewidth then

Compute features µC for C ∈ G (Equation 6).
Optimize full likelihood (Equation 5).

else if G is undirected with high treewidth then
Compute features µ{a}∪N (a) for a ∈ h (Equation 8).
Optimize pseudolikelihood (Equation 7).

end if

Remark If we have exclusive views for only a subset of
the cliques, we can still obtain the expected features µC for
those cliques and use posterior regularization (Graça et al.,
2008), measurements (Liang et al., 2009), or generalized
expectation criteria (Mann & McCallum, 2008) to encour-
age Epθ [φ(xC ,hC)] to match µC . The resulting objective
functions would be non-convex, but we expect local optima
to be less of an issue.

5.1. Pseudolikelihood

While we now have a complete algorithm for estimating
directed and undirected models, optimizing the full likeli-
hood (Equation 5) can still be computationally intractable
for undirected models with high treewidth due to the in-
tractability of the log-partition function A(θ). One can
employ various variational approximations of A(θ) (Wain-
wright & Jordan, 2008), but these generally lead to incon-
sistent estimates of θ. We thus turn to an older idea of
pseudolikelihood (Besag, 1975). The pseudolikelihood ob-
jective is a sum over the log-probability of each variable a
given its neighbors N (a):

Lpseudo(θ) , E(x,h)∼pθ∗

[ ∑
a∈x∪h

log pθ(a | N (a))

]
. (7)

In the fully-supervised setting, it is well-known that pseu-
dolikelihood provides consistent estimates which are com-
putationally efficient but less statistically efficiency.5

Let φa,N (a)(a,N (a)) =
∑
C3a φC(xC ,hC) denote the sum

over cliques C that contain a; note that φa,N (a) only de-
pends on a and its neighbors N (a). We can write each
conditional log-likelihood from Equation 7 as:

pθ(a | N (a)) = exp(θ>φa,N (a)(a,N (a))−Aa(θ;N (a))),

where the conditional log-partition function

5 Coincidentally, this is the same high-level motivation for us-
ing method of moments in the first place.
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Aa(θ;N (a)) = log
∑
α∈[k] exp(θ>φa,N (a)(α,N (a)))

involves marginalizing only over the single variable a.

If we knew the marginals for each neighborhood,

µa,N (a) , E[φa,N (a)(a,N (a))], (8)

then we would be able to optimize the pseudolikelihood
objective again without having access to any labeled data.
Unfortunately, {a} ∪ N (a) does not always have exclu-
sive views. For example, consider a = h1 and N (a) =
{h2, h3, h4} in Figure 3(b).

However, we can decompose {a} ∪ N (a) as fol-
lows: conditioning on a partitions N (a) into indepen-
dent subsets; let B(a) be the collection of these sub-
sets, which we will call sub-neighborhoods. For exam-
ple, B(h1) = {{h2}, {h3}, {h4}} in Figure 3(b) and
B(h2,2) = {{h1,2, h2,3, h3,2, h2,1}} contains a single sub-
neighborhood in Figure 5.

A key observation is that for each sub-neighborhood B ∈
B(a), each {a}∪B is bidependent: conditioning on a does
not introduce new independencies within B by construc-
tion of B(a), and conditioning on any b ∈ B does not either
since every other b′ ∈ B\{b} is connected to a. Assum-
ing G is bottlenecked, by Lemma 2 we have that {a} ∪ B
has exclusive views. Hence, we can recover P(a,B) for
each a and B ∈ B(a). Based on conditional indepen-
dence of the sub-neighborhoods B given a, we have that
P(a,N (a)) = P(a)

∏
B∈B(a) P(B | a). This allows us to

compute the expected features µa,N (a) and use them in the
optimization of the pseudolikelihood objective.

Note that our pseudolikelihood-based approach does de-
pend exponentially on the size of the sub-neighborhoods,
which could be exceed the largest clique size. Therefore,
each node essentially should have low degree or locally ex-
hibit a lot of conditional independence. On the positive
side, we can handle graphical models with high treewidth;
neither sample nor computational complexity necessarily
depends on the treewidth. For example, an n×n grid model
has a treewidth of n, but the degree is at most 4.

6. Discussion
For latent-variable models, there has been tension between
local optimization of likelihood, which is broadly appli-
cable but offers no global theoretical guarantees, and the
spectral method of moments, which provides consistent es-
timators but are limited to models with special structure.
The purpose of this work is to show that the two methods
can be used synergistically to produce consistent estimates
for a broader class of directed and undirected models.

Our approach provides consistent estimates for a family of
models in which each hidden variable is a bottleneck—that

is, it has three conditionally independent observations. This
bottleneck property of Anandkumar et al. (2013) has been
exploited in many other contexts, including latent Dirichlet
allocation (Anandkumar et al., 2012b), mixture of spherical
Gaussians (Hsu & Kakade, 2013), probabilistic grammars
(Hsu et al., 2012), noisy-or Bayesian networks (Halpern
& Sontag, 2013), mixture of linear regressions (Chaganty
& Liang, 2013), and others. Each of these methods can
be viewed as “preprocessing” the given model into a form
that exposes the bottleneck or tensor factorization structure.
The model parameters correspond directly to the solution
of the factorization.

In contrast, the bottlenecks in our graphical models are
given by assumption, but the conditional distribution of
the observations given the bottleneck can be quite com-
plex. Our work can therefore be viewed as “postprocess-
ing”, where the conditional moments recovered from tensor
factorization are used to further obtain the hidden marginals
and eventually the parameters. Along the way, we devel-
oped the notion of exclusive views and bidependent sets,
which characterize conditions under which the conditional
moments can reveal the dependency structure between hid-
den variables. We also made use of custom likelihood func-
tions which were constructed to be easy to optimize.

Another prominent line of work in the method of moments
community has focused on recovering observable opera-
tor representations (Jaeger, 2000; Hsu et al., 2009; Bailly
et al., 2010; Balle & Mohri, 2012). These methods allow
prediction of new observations, but do not recover the ac-
tual parameters of the model, making them difficult to use
in conjunction with likelihood-based models. Song et al.
(2011) proposed an algorithm to learn observable opera-
tor representations for latent tree graphical models, like
the one in Figure 3(b), assuming the graph is bottlenecked.
Their approach is similar to our first step of learning condi-
tional moments, but they only consider trees. Parikh et al.
(2012) extended this approach to general graphical models
which are bottlenecked using a latent junction tree repre-
sentation. Consequently, the size of the observable repre-
sentations is exponential in the treewidth. In contrast, our
algorithm only constructs moments of the order of size of
the cliques (and sub-neighborhoods for pseudolikelihood),
which can be much smaller.

An interesting direction is to examine the necessity of the
bottleneck property. Certainly, three views is in general
needed to ensure identifiability (Kruskal, 1977), but re-
quiring each hidden variable to be a bottleneck is stronger
than what we would like. We hope that by judiciously
leveraging likelihood-based methods in conjunction with
the method of moments, we can generate new hybrid tech-
niques for estimating even richer classes of latent-variable
models.
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Figure 6. Reduction to canonical form.

A. Proofs
Due to space limitations, we have omitted some proofs
from the main body of the paper. The proofs are provided
below.

A.1. Lemma 1

Proof. Let xv be an observed variable which is contained
in more than one clique or in cliques of size larger than
2. We apply the following simple transformation (see Fig-
ure 6 for directed models): first, replace xv with a a new
hidden variable hnew; for directed models, this means that
the parents and children of xv become the parents and chil-
dren of hnew. Second, create three fresh observed variables
xv1 , xv2 , xv3 , connecting them to hnew, and making all new
nodes to deterministically take on identical values. We add
three copies so that hnew is guaranteed to be a bottleneck.
By construction, there is a one-to-one mapping between the
joint distributions of the old and new graphical models, and
thus the parameters as well. We repeatedly apply this pro-
cedure until the graphical model is in canonical form.

A.2. Lemma 3

In Section 4.2, we compared the asymptotic variance Σcl
S

of the composite likelihood estimator with that of the pseu-
doinverse estimator, Σpi

S , for a subset of hidden variables S.
Now we will derive these asymptotic variances in detail.

Recall, that in Section 4.2 we simplified notation by tak-
ing m = 1 and flattening the moments MV and hidden
marginals ZS into vectors µ ∈ Rd and z ∈ Rk respectively.
The conditional moments, O, is a now matrix O ∈ Rd×k
and the hidden marginals z and observed marginals µ are
related via µ = Oz.

Lemma (Asymptotic variances). The asymptotic vari-

ances of the pseudoinverse estimator ̂̃zpi
and composite

likelihood estimator ̂̃zcl
are:

Σpi = Õ†(D̃ − µ̃µ̃>)Õ†>,

Σcl =
(
Õ>(D̃−1 + d̃−111>)Õ

)−1

,

where D̃ , diag(µ̃) and d̃ , 1− 1>µ̃.

Proof for Lemma 3. First, let us look at the asymptotic
variance of the pseudoinverse estimator ẑpi = Õ†(̂̃µ −
O¬d,k). Note that µ̂ = 1

n

∑n
i=1 xi, where each xi is

an independent draw from the multinomial distribution µ.
Hence the variance of µ̂ is (D−µµ>) whereD , diag(µ).
Recall that ̂̃µ is just the first d− 1 entries of µ̂, so the vari-
ance of ̂̃µ is (D̃ − µ̃µ̃>) where D̃ , diag(µ̃). Since z̃ is
just a linear transformation of µ̃, the asymptotic variance of̂̃zpi

is:

Σpi = Õ†Var(̂̃µ)Õ†>

= Õ†(D̃ − µ̃µ̃>)Õ†>.

Now, let us look at the variance of the composite likeli-
hood estimator. Using the delta-method (van der Vaart,
1998) we have that the asymptotic variance of ̂̃zcl

=
arg maxz̃ Ê[`(x; z̃)] is,

Σcl = E[∇2`(x; z̃∗)]−1 Var[∇`(x; z̃∗)]E[∇2`(x; z̃∗)]−1,

where `(x; z̃) is the log-likelihood of the observations x
given parameters z̃. We can write `(x; z̃) in terms of z̃ and
Õ as,

`(x; z̃) = log(µ[x])

= log

(
e>x

[
Õ

−1>Õ

]
z̃ + e>x

[
O¬d,k

1− 1>O¬d,k

])
,

where ex is an indicator vector on x.

Taking the first derivative,

∇`(x; z̃) =
1

µ[x]

[
Õ

−1>Õ

]>
ex

=

[
Õ

−1>Õ

]>
D−1ex, (9)

where D , diag(µ).

It is easily verified that the expectation of the first derivative
is indeed 0:

E[∇`(x; z̃)] =

[
Õ

−1>Õ

]>
D−1 E[ex]

=

[
Õ

−1>Õ

]>
D−1µ

=

[
Õ

−1>Õ

]>
1

= Õ>1− Õ>1
= 0.
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Taking the second derivative,

∇2`(x; z̃) =
1

µ[x]2

[
Õ

−1>Õ

]>
exe
>
x

[
Õ

−1>Õ

]

=

[
Õ

−1>Õ

]>
D−1exe

>
xD
−1

[
Õ

−1>Õ

]
. (10)

From Equation 9 and Equation 10, we get

E[∇2`(x; z̃∗)] = −
[

Õ

−1>Õ

]>
D−1 E[exe

>
x ]D−1

[
Õ

−1>Õ

]

Var[∇`(x; z̃∗)] =

[
Õ

−1>Õ

]>
D−1 E[exe

>
x ]D−1

[
Õ

−1>Õ

]

=

[
Õ

−1>Õ

]>
D−1DD−1

[
Õ

−1>Õ

]

=

[
Õ

−1>Õ

]> [
D̃−1 0

0> d̃−1

][
Õ

−1>Õ

]
= Õ>D̃−1Õ + d̃−1Õ>11>Õ,

where D̃ = diag(µ̃) and d̃ = 1 − 1>µ̃ are the diagonal
elements of D. As expected, E[∇2`(x)] = −Var[∇`(x)]
because ẑ is a maximum likelihood estimator.

Finally, the asymptotic variance of Σcl is,

Σcl = E[∇2`(x; z̃∗)]−1 Var[∇`(x; z̃∗)]E[∇2`(x; z̃∗)]−1

= Var[∇`(x; z̃∗)]−1

=
(
Õ>D̃−1Õ + d̃−1Õ>11>Õ

)−1

.

Given our assumptions, 1 � µ � 0. Consequently, D̃ is
invertible and the asymptotic variance is finite.

A.3. Comparing the pseudoinverse and composite
likelihood estimators

In Lemma 3, we derived concrete expressions for the
asymptotic variances of the pseudoinverse and composite
likelihood estimators, Σpi and Σcl respectively. In this sec-
tion, we will use the asymptotic variances to compare the
two estimators for two special cases.

Recall that the relative efficiency of the pseudoinverse es-
timator with respect to the composite likelihood estimator
is epi = 1

k̃
tr(Σcl(Σpi)−1), where k̃ = k − 1. The Cramér-

Rao lower bound tells us that Σcl � Σpi: thus the relative
efficiency epi lies between 0 and 1. When epi = 1, the
pseudoinverse estimator is said to be efficient.

We will make repeated use of the Sherman-Morrison for-
mula to simplify matrix inverses:

(A+ αuv>)−1 = A−1 − A−1uv>A−1

α−1 + v>A−1u
,

where A is an invertible matrix, u, v are vectors and α is
a scalar constant. Unless otherwise specified, we ‖u‖ to
denote the Euclidean norm of a vector u.

First, let us consider the case where Õ:

Lemma 6 (Relative efficiency when Õ is invertible). When
Õ is invertible, the asymptotic variances of the pseudoin-
verse and composite likelihood estimators are equal, Σcl =
Σpi, and the relative efficiency is 1.

Proof. Given that Õ is invertible we can simplify the ex-
pression of the asymptotic variance of the composite like-
lihood estimator, Σcl, as follows:

Σcl =
(
Õ>(D̃−1 + d̃−111>)Õ

)−1

= Õ−1
(
D̃−1 − d̃−111>

)−1

Õ−>

= Õ−1

(
D̃ − D̃11>D̃

d̃+ 1>D̃1

)
Õ−>.

Note that D̃1 = µ̃ and d̃ = 1− 1>µ̃. This gives us,

Σcl = Õ−1

(
D̃ − µ̃µ̃>

1− 1>µ̃+ 1>µ̃

)
Õ−>

= Õ−1(D̃ − µ̃µ̃>)Õ−>

= Σpi.

Next, we consider the case where the observed moments µ
is the uniform distribution.

Lemma 7 (Relative efficiency with uniform observed mo-
ments). Let the observed marginals µ be uniform: µ = 1

d1.
The efficiency of the pseudoinverse estimator is,

epi = 1− 1

k − 1

‖1U‖22
1 + ‖1U‖22

(
1− 1

d− ‖1U‖22

)
, (11)

where 1U , ÕÕ†1, the projection of 1 onto the column
space of Õ. Note that 0 ≤ ‖1U‖22 ≤ k − 1.

When ‖1U‖2 = 0, the pseudoinverse estimator is efficient:
epi = 1. When ‖1U‖2 > 0 and d > k, the pseudoinverse
estimator is strictly inefficient. In particular, if ‖1U‖22 =
k − 1, and we get:

epi = 1− 1

k

(
1− 1

1 + d− k

)
. (12)
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Proof. Next, let us consider the case where the moments
are the uniform distribution, where µ = 1

d1 and D̃ = 1
dI .

The expressions for Σcl can be simplified as follows,

Σcl =
(
Õ>(dI + d11>)Õ

)−1

=
1

d

(
Õ>Õ + Õ>11>Õ

)−1

=
1

d

(
(Õ>Õ)−1 − (Õ>Õ)−1Õ>11>Õ(Õ>Õ)−1

1 + 1>Õ(Õ>Õ)−1Õ>1

)

=
1

d

(
Õ†Õ†> − (Õ†Õ†>Õ>)11>(ÕÕ†Õ†>)

1 + (1>ÕÕ†)(Õ†>Õ>1)

)
,

where we have used the property (Õ>Õ)−1 = Õ†Õ†>

in the last step. Next, we use the pseudoinverse property,
ÕÕ†Õ†> = Õ†>,

Σcl =
1

d

(
Õ†Õ†> − Õ†11>Õ†>

1 + ‖ÕÕ†1‖2

)

=
1

d

(
Õ†Õ†> − Õ†11>Õ†>

1 + ‖1U‖2

)
,

where 1U , ÕÕ†1 = Õ†>Õ>1 is the projection of 1 onto
the column space of Õ.

Next, we can simplify the expression for (Σpi)−1,

Σpi = Õ†
(
I

d
− 11>

d2

)
Õ†>

(Σpi)−1 =

(
1

d
Õ†Õ†> − 1

d2
Õ†11>Õ†>

)−1

= d

(
(Õ†Õ†>)−1

+
(Õ†Õ†>)−1Õ†11>Õ†>(Õ†Õ†>)−1

d− 1>Õ†>(Õ†Õ†>)−1Õ†1

)
.

Using the properties (Õ†Õ†>)−1 = Õ>Õ and Õ>ÕÕ† =

Õ>, we get,

(Σpi)−1 = d

(
Õ>Õ +

Õ>ÕÕ†11>Õ†>Õ>Õ

d− 1>Õ†>Õ>ÕÕ†1

)

= d

(
Õ>Õ +

Õ>11>Õ

d− ‖Õ†Õ1‖2

)

= d

(
Õ>Õ +

Õ>11>Õ

d− ‖1U‖2

)
.

Now, we are ready to study the relative efficiency.

epi =
1

k̃
tr(Σcl(Σpi)−1)

=
1

k̃
tr

(
1

d

(
Õ†Õ†> − Õ†11>Õ†>

1 + ‖1U‖2

)

d

(
Õ>Õ +

Õ>11>Õ

d− ‖1U‖2

))

=
1

k̃
tr(I) +

1

k̃
tr

(
Õ†Õ†>Õ>11>Õ

d− ‖1U‖2

)

− 1

k̃
tr

(
Õ†11>Õ†>Õ>Õ

1 + ‖1U‖2

)

− 1

k̃
tr

(
Õ†11>Õ†>Õ>11>Õ

(d− ‖1U‖2)(1 + ‖1U‖2)

)

Next we apply the property that the trace is invariant under
cyclic permutations,

epi = 1 +
1

k̃

‖Õ†>Õ>1‖2
d− ‖1U‖2

− 1

k̃

‖ÕÕ†1‖2
1 + ‖1U‖2

− 1

k̃

(1>Õ†>Õ>1)2

(d− ‖1U‖2)(1 + ‖1U‖2)
.

Note that ÕÕ† is a symmetric projection matrix and thus,
ÕÕ† = (ÕÕ†)> and ÕÕ† = (ÕÕ†)(ÕÕ†). Then,

epi = 1 +
1

k̃

‖1U‖2
d− ‖1U‖2

− 1

k̃

‖1U‖2
1 + ‖1U‖2

− 1

k̃

‖1U‖4
(1 + ‖1U‖2)(d− ‖1U‖2)

= 1− ‖1U‖2
k̃(1 + ‖1U‖2)

(
1− 1

d− ‖1U‖2
)
.

Note that 1U is the projection of 1 on to a k-dimensional
subspace, thus, 0 ≤ ‖1U‖2 ≤ k. When 1U = 0, the
relative efficiency epi is 1: the pseudoinverse estimator is
efficient. When ‖1U‖ > 0 and d > k, the pseudoinverse
estimator is strictly inefficient.

Consider the case when ‖1U‖2 = k̃. Then, the relative
efficiency is,

epi = 1− 1

k̃ + 1

(
1− 1

d− k̃

)
= 1− 1

k

(
1− 1

1 + d− k

)
.
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