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Introduction

Latent Variable Graphical Models

I Gaussian Mixture Models
I Latent Dirichlet Allocation
I Hidden Markov Models
I PCFGs
I . . .
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Introduction

Parameter Estimation is Hard
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I Log-likelihood function is non-convex.

I MLE is consistent but intractable.
I Local methods (EM, gradient descent, . . . ) are tractable but

inconsistent.
I Method of moments estimators can be consistent and

computationally-efficient, but require more data.
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Introduction

Consistent estimation for general models
I Several estimators based on the method of moments.

I Phylogenetic trees: Mossel and Roch 2005.
I Hidden Markov models: Hsu, Kakade, and Zhang 2009
I Latent Dirichlet Allocation: Anandkumar et al. 2012
I Latent trees: Anandkumar et al. 2011
I PCFGs: Hsu, Kakade, and Liang 2012
I Mixtures of linear regressors chaganty13regression
I . . .

I These estimators are applicable only to a specific type of model.
I In contrast, EM and gradient descent apply for almost any model.
I Note: some work in the observable operator framework does apply to

a more general model class.
I Weighted automata: Balle and Mohri 2012.
I Junction trees: Song, Xing, and Parikh 2011
I . . .
I TODO: Check that this list is representative

I How can we apply the method of moments to estimate
parameters efficiently for a general model?
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Introduction

Setup

I Discrete models, d , k.
I Assume d > k.
I Parameters and marginals can

be put into a matrix or tensor
-¿ introduce notation.

I Assume infinite data.
I Highlight directed vs

undirected - we focus on
directed.
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Introduction

Background: Three-view Mixture Models

Definition (Bottleneck)
A hidden variable h is a bottleneck
if there exist three observed
variables (views) x1, x2, x3 that are
conditionally independent given h.

I Anandkumar, Hsu, and Kakade
2012 provide an algorithm to
estimate conditional moments
P(xi | h) based on tensor
eigendecomposition.

I In general, three views are
necessary for identifiability
(Kruskal 1977).

h

x2x1 x3
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Introduction

Outline

TODO: Make outline a diagram

Introduction

Estimating Hidden Marginals

Combining moments with likelihood estimators

Recovering parameters

Conclusions
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Introduction

Example: a bridge, take I

I Each edge has a set of
parameters.

I h1 and h2 are bottlenecks.
I We can learn

P(xa
1 |h1),P(xb

1 |h1), · · · .
I However, we can’t learn

P(h2|h1) this way.

h1 h2

xa
1

xb
1 xa

2
xb

2

Chaganty, Liang (Stanford University) Moments and Likelihoods June 18, 2014 8 / 26



Introduction

Example: a bridge, take I

I Each edge has a set of
parameters.

I h1 and h2 are bottlenecks.

I We can learn
P(xa

1 |h1),P(xb
1 |h1), · · · .

I However, we can’t learn
P(h2|h1) this way.

h1 h2

xa
1

xb
1 xa

2
xb

2

Chaganty, Liang (Stanford University) Moments and Likelihoods June 18, 2014 8 / 26



Introduction

Example: a bridge, take I

I Each edge has a set of
parameters.

I h1 and h2 are bottlenecks.
I We can learn

P(xa
1 |h1),P(xb

1 |h1), · · · .

I However, we can’t learn
P(h2|h1) this way.

h1 h2

xa
1

xb
1 xa

2
xb

2

Chaganty, Liang (Stanford University) Moments and Likelihoods June 18, 2014 8 / 26



Introduction

Example: a bridge, take I

I Each edge has a set of
parameters.

I h1 and h2 are bottlenecks.
I We can learn

P(xa
1 |h1),P(xb

1 |h1), · · · .

I However, we can’t learn
P(h2|h1) this way.

h1 h2

xa
1

xb
1 xa

2
xb

2

Chaganty, Liang (Stanford University) Moments and Likelihoods June 18, 2014 8 / 26



Introduction

Example: a bridge, take I

I Each edge has a set of
parameters.

I h1 and h2 are bottlenecks.
I We can learn

P(xa
1 |h1),P(xb

1 |h1), · · · .
I However, we can’t learn

P(h2|h1) this way.

h1 h2

xa
1

xb
1 xa

2
xb

2

Chaganty, Liang (Stanford University) Moments and Likelihoods June 18, 2014 8 / 26



Introduction

Example: a bridge, take II

I Observe the joint distribution, TODO: Use
cartoon matrices

P(xb
1 , xa

2 )︸ ︷︷ ︸
M12

=
∑
h1,h2

P(xb
1 | h1)︸ ︷︷ ︸

O(1|1)

P(xa
2 | h2)︸ ︷︷ ︸

O(2|2)

P(h1, h2)︸ ︷︷ ︸
Z12

.

I Observed moments P(xb
1 , xa

2 ) are linear
in the hidden marginals P(h1, h2).

M12 = O(1|1)Z12O(2|1)>

I Solve for P(h1, h2) using
pseudoinversion.

Z12 = O(1|1)†M12O(2|1)†>

I P(h2 | h1) can be recovered by
normalization.

h1 h2

xa
1

xb
1 xa

2

xb
2
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Introduction

Outline

TODO: Make outline a diagram
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Estimating Hidden Marginals

Exclusive Views

Definition (Exclusive views)
We say hi ∈ S ⊆ h has an
exclusive view xv if

1. There exists some observed
variable xv which is
conditionally independent of
the others S\{hi} given hi .

2. The conditional moment
matrix O(v |i) , P(xv | hi) has
full column rank k and can be
recovered.

3. TODO: Exclusive views for a clique

h1

h2

h3

h4

x1

x2

x3

x4

S
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Estimating Hidden Marginals

Exclusive views give parameters

I Given exclusive views, P(x | h),
learning cliques is solving a
linear equation! TODO: Use cartoon

tensors

P(x1, . . . , xm)︸ ︷︷ ︸
M

=
∑

h1,...,hm

P(x1|h1)︸ ︷︷ ︸
O(1|1)

· · ·

P(h1, · · · , hm)︸ ︷︷ ︸
Z

M = Z (O(1|1), · · · ,O(m|m))

Z = M(O(1|1)†, · · · ,O(m|m)†).

h1

h2

h3

h4

x1

x2

x3

x4

S
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Estimating Hidden Marginals

Bottlenecked graphs

I When are we assured exclusive
views?

Definition (Bottlenecked set)
A set of hidden variables S is said
to be bottlenecked if each h ∈ S is
a bottleneck.

I Theorem: A bottlenecked
clique has exclusive views.
TODO: Say show in paper.
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Estimating Hidden Marginals

Outline

TODO: Make outline a diagram

Introduction

Estimating Hidden Marginals

Combining moments with likelihood estimators

Recovering parameters

Conclusions
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Estimating Hidden Marginals

Example
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Estimating Hidden Marginals

More Bottlenecked Examples

Halpern and Sontag 2013

h1 h2 h3 . . .

x1 x2 x3

Hidden Markov models
h1

h2 h3 h4

xa
2 xb

2 xa
3 xb

3 xa
4 xb

4

Latent Tree models

h1 h2

x1 x2 x3 x4 x5
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Estimating Hidden Marginals

More Bottlenecked Examples
Halpern and Sontag 2013

h1 h2 h3 . . .

x1 x2 x3

Hidden Markov models
h1

h2 h3 h4

xa
2 xb

2 xa
3 xb

3 xa
4 xb

4

Latent Tree models

h1 h2

x1 x2 x3 x4 x5

Noisy Or (non-example)
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Combining moments with likelihood estimators

Outline

TODO: Make outline a diagram
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Combining moments with likelihood estimators

Convex marginal likelihoods

I The MLE is statistically most
efficient, but usually
non-convex.

I If we fix the conditional
moments, − logP(x) is convex
in θ.

I No closed form solution, but a
local method like EM is
guaranteed to converge to the
global optimum.

h1 h2

xa
1

xb
1 xa

2
xb

2

logP(x) = log
∑
h1,h2

P(x1|h1)P(x2|h2)P(h1, h2)
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I The MLE is statistically most
efficient, but usually
non-convex.

I If we fix the conditional
moments, − logP(x) is convex
in θ.

I No closed form solution, but a
local method like EM is
guaranteed to converge to the
global optimum.
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Combining moments with likelihood estimators

Composite likelihoods

I In general, the full likelihood is
still non-convex. TODO: Specify which

x.

I Consider composite likelihood
on a subset of observed
variables.

I Can be shown that estimation
with composite likelihoods is
consistent (Lindsay 1988).

I Asymptotically, the composite
likelihood estimator is more
efficient.

h1 h2 h3 . . .

x1 x2 x3

logP(x) = log
∑

h1,h2,h3

P(x1 | h1)P(x2 | h2)P(x3 | h3)︸ ︷︷ ︸
known

P(h3 | h2)P(h1, h2)
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Recovering parameters

Outline

TODO: Make outline a diagram

Introduction

Estimating Hidden Marginals

Combining moments with likelihood estimators

Recovering parameters

Conclusions
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Recovering parameters

Recovering parameters in directed models

I Conditional probability tables
are the default
parameterization for a directed
model.

I Can be recovered by
normalization:

P(h2 | h1) =
P(h1, h2)∑
h2 P(h1, h2)

.
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Recovering parameters

Recovering parameters in undirected log-linear models
I Assume a log-linear parameterization,

TODO: use sum over cliques - talk through.

pθ(x, h) = exp
(
θ>φ(x, h)− A(θ)

)
.

I The unsupervised negative
log-likelihood is non-convex,

Lunsup(θ) , Ex∼D[− log
∑
h∈H

pθ(x, h)].

I However, the supervised negative
log-likelihood is convex,

Lsup(θ) , E(x,h)∼Dsup [− log pθ(x, h)]

= −θ>
(∑
C∈G

E(x,h)∼Dsup [φ(xC , hC)]

)
+ A(θ).
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Recovering parameters

Recovering parameters in undirected log-linear models

I Recall, the marginals can typically
estimated from supervised data.

Lsup(θ) = −θ>
(∑
C∈G

E(x,h)∼Dsup [φ(xC , hC)]

)
︸ ︷︷ ︸

µC

+ A(θ).

I However, the marginals can also be
consistently estimated by moments!

µC =
∑

xC ,hC

P(xC | hC)︸ ︷︷ ︸
cond. moments

P(hC)︸ ︷︷ ︸
hidden marginals

φ(xC , hC).
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Recovering parameters

Optimizing pseudolikelihood

I Estimating marginals µC is independent
of treewidth, but computing the
normalization constant is: TODO: convex
but not easy

A(θ) , log
∑
x,h

exp
(
θ>φ(x, h)

)
.

I We can use pseudolikelihood
(besag75pseudo) to consistently
estimate distributions over local
neighborhoods.

Apseudo(θ;N (a)) , log
∑

a

exp
(
θ>φ(xN , hN )

)
.

I Clique marginals not sufficient statistics,
but we can still estimate them.
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Conclusions

Conclusions
I TODO: Use outline slide.
I TODO: Show the venn diagram on progress on

generality..
I An algorithm for any

(non-degenerate)
bottlenecked discrete
graphical models.

I Efficiently learns models with
high-treewidth.

I Combine moment estimators
with composite likelihood
estimators.

I Extends to log-linear models.

I Allows for easy
regularization, missing data,
etc.
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Conclusions

Thank you!
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