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Generative Models Discriminative Models

» Latent variable models (LVMs) are hard to learn because latent variables
introduce non-convexities in the log-likelihood function.

» In practice, local methods (EM, gradient descent, etc.) are employed, but
these can stuck in local optima.

» Can we develop efficient consistent estimators for
discriminative latent variable models?
> Why discriminative LVMs? Easy to add features, often more accurate.
> The method of moments has been used for consistent parameter
estimation in several generative LVMs, e.g. HMMs! LDA! and
stochastic block models?.
> Can we extend these techniques to discriminative LVMs?

» Main result: Consistent estimator for a simple discriminative model; the
mixture of linear regressions.

> Key ldea: Expose tensor factorization structure using regression.
> Theory: We prove polynomial sample and computational complexity.
[1] Anandkumar, Hsu, Kakade, 2012; [2] Anandkumar, Ge, Hsu, Kakade, 2012

Aside: Tensor Operations

» Tensor Product
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Mixture of Linear Regressions

» For a particular x, we draw y as
follows,

> h ~ Mult([my, 72, -+ , 7k]).
>y = ,Bf;rx + €.

» Given D = {(xi, yi)}'_;, we want to recover the parameters 7 and B.

» Our approach uses low-rank regression to reduce the problem to tensor
eigendecomposition.
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Step 1: Finding Tensor Structure via Regression

» Key Observation: Regression on the powers of (y, x) gives us the
expected powers of the regression coefficients 3.
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» Mj and M3 are both of rank k, so we can use low rank regression”:*!
. : 2
= arg ml\/lln Z (y2 — <M,x®2> — b1a82) + X2 [|[M]|«
(x,y)eD >.ioi(M)
. : 2
arg min Z (y? — (M, x®3) — bias3)” + A3|| M.

[3] Fazel, 2002; [4] Tomoika, Hayashi and Kashima, 2010
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» Key Observation: If 3}, are orthogonal, they are eigenvectors®;
M3(Bh, Br) = ThBh.
» In general, we can whiten Mj first.
[5]: Anandkumar, Ge, Hsu, Kakade, Telgarksy, 2012.

Experiments

» With finite samples, Spectral Experts seems to find parameters that
sufficiently separate components that EM initialized with these parameters
recovers true parameters more often than EM with random initializations.

» In this example, y = 8T[1,t,t*, t']" + €. k=3,d = 4,n = 10°,
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» Below are parameter errors averaged over 10 initializations on 10 different
simulated datasets with the specified parameter configurations,
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» Log-likelihood cartoon: It seems that our parameter estimates fall in
the right basin of attraction for EM.
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Future Work

» How can we handle other discriminative models?

> Non-linear link functions (hidden variable logistic regression).
> Dependencies between h and x (mixture of experts).
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