Spectral Experts for Estimating Mixtures of Linear Regressions

Arun Tejasvi Chaganty Percy Liang Department of Computer Science Stanford University

Parameter Estimation in Latent Variable Models

Generative Models

Discriminative Models

- ► Latent variable models (LVMs) are hard to learn because latent variables introduce non-convexities in the log-likelihood function.
- ▶ In practice, local methods (EM, gradient descent, etc.) are employed, but these can stuck in local optima.
- ► Can we develop efficient consistent estimators for discriminative latent variable models?
 - ▶ Why discriminative LVMs? Easy to add features, often more accurate.
- ▶ The method of moments has been used for consistent parameter estimation in several generative LVMs, e.g. HMMs¹, LDA¹, and stochastic block models².
- Can we extend these techniques to discriminative LVMs?
- ▶ Main result: Consistent estimator for a simple discriminative model; the mixture of linear regressions.
- ▶ **Key Idea:** Expose tensor factorization structure using regression.
- ▶ **Theory:** We prove polynomial sample and computational complexity.
 - [1] Anandkumar, Hsu, Kakade, 2012; [2] Anandkumar, Ge, Hsu, Kakade, 2012

Aside: Tensor Operations

Tensor Product

$$x^{\otimes 3} = x \otimes x \otimes x$$
$$x_{iik}^{\otimes 3} = x_i x_j x_k$$

► Inner product

$$\langle A, B \rangle = \sum_{ijk} A_{ijk} B_{ijk}$$

= $\langle \text{vec } A, \text{vec } B \rangle$

Mixture of Linear Regressions

- ightharpoonup For a particular x, we draw y as follows.
- $\triangleright h \sim \text{Mult}([\pi_1, \pi_2, \cdots, \pi_k]).$ $\triangleright y = \beta_h^T x + \epsilon.$
- ▶ Given $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, we want to recover the parameters π and B.

▶ Our approach uses low-rank regression to reduce the problem to tensor eigendecomposition.

$$\{x^{\otimes 2}, y^2\}_{(x,y)\in\mathcal{D}} \longrightarrow M_2$$

$$\{x^{\otimes 3}, y^3\}_{(x,y)\in\mathcal{D}} \longrightarrow M_3$$

low-rank regression

tensor factorization

Sample Complexity: $O\left(k \|x\|^{12} \|\beta\|^6 \|\mathbb{E}[\epsilon^2]\|^6\right) O\left(\frac{k\pi_{\max}^2}{\sigma_k(M_2)^5}\right)$

Step 1: Finding Tensor Structure via Regression

Key Observation: Regression on the powers of (y, x) gives us the expected powers of the regression coefficients β .

$$y = \langle \beta_h, x \rangle + \epsilon$$

$$= \underbrace{\langle \mathbb{E}[\beta_h], x \rangle}_{\text{linear measurement}} + \underbrace{(\beta_h - \mathbb{E}[\beta_h])^T x + \epsilon}_{\text{noise}}$$

$$y^{2} = (\langle \beta_{h}, x \rangle + \epsilon)^{2}$$

$$= \langle \mathbb{E}[\beta_{h}^{\otimes 2}], x^{\otimes 2} \rangle + \text{bias}_{2} + \text{noise}_{2}$$

$$y^3 = \langle \underbrace{\mathbb{E}[\beta_h^{\otimes 3}]}_{M_3}, x^{\otimes 3} \rangle + \text{bias}_3 + \text{noise}_3$$

$$M_3$$
 M_2 and M_3 are both of rank k , so we can use low rank regression^{3,4}!

$$\hat{M}_{2} = \arg\min_{M} \sum_{(x,y)\in\mathcal{D}} (y^{2} - \langle M, x^{\otimes 2} \rangle - \text{bias}_{2})^{2} + \lambda_{2} \underbrace{\|M\|_{*}}_{\sum_{i} \sigma_{i}(M)}$$

$$\hat{M}_{3} = \arg\min_{M} \sum_{M} (y^{3} - \langle M, x^{\otimes 3} \rangle - \text{bias}_{3})^{2} + \lambda_{3} \|M\|_{*}$$

[3] Fazel, 2002; [4] Tomoika, Hayashi and Kashima, 2010

Step 2: Parameter Recovery via Tensor Factorization

 $ightharpoonup M_3$ has a low-rank tensor decomposition: $M_3 = \sum_{h=1}^k \pi_h \beta_h^{\otimes 3}$

$$= + + \cdots +$$

$$k$$

- **Key Observation:** If β_h are orthogonal, they are eigenvectors⁵; $M_3(\beta_h,\beta_h)=\pi_h\beta_h$.
- ▶ In general, we can whiten M_3 first.

[5]: Anandkumar, Ge, Hsu, Kakade, Telgarksy, 2012.

Experiments

- ▶ With finite samples, Spectral Experts seems to find parameters that sufficiently separate components that EM initialized with these parameters recovers true parameters more often than EM with random initializations.
- ► In this example, $y = \beta^T [1, t, t^4, t^7]^T + \epsilon$. $k = 3, d = 4, n = 10^5$,

▶ Below are parameter errors averaged over 10 initializations on 10 different simulated datasets with the specified parameter configurations,

▶ Log-likelihood cartoon: It seems that our parameter estimates fall in the right basin of attraction for EM.

Future Work

- ► How can we handle other discriminative models?
 - ▶ Non-linear link functions (hidden variable logistic regression).
 - \triangleright Dependencies between h and x (mixture of experts).