
Combining Relational Learning with SMT
Solvers using CEGAR

Arun Chaganty1, Akash Lal2, Aditya V. Nori2, and Sriram K. Rajamani2

1 Stanford / chaganty@stanford.com
2 Microsoft Research, India / {akashl, adityan, sriram}@microsoft.com

Abstract. In statistical relational learning, one is concerned with infer-
ring the most likely explanation (or world) that satisfies a given set of
weighted constraints. The weight of a constraint signifies our confidence
in the constraint, and the most likely world that explains a set of con-
straints is simply a satisfying assignment that maximizes the weights of
satisfied constraints. The relational learning community has developed
specialized solvers (e.g., Alchemy and Tuffy) for such weighted con-
straints independently of the work on SMT solvers in the verification
community. In this paper, we show how to leverage SMT solvers to sig-
nificantly improve the performance of relational solvers.
Constraints associated with a weight of 1 (or 0) are called axioms because
they must be satisfied (or violated) by the final assignment. Axioms can
create difficulties for relational solvers. We isolate the burden of axioms
to SMT solvers and only lazily pass information back to the relational
solver. This information can either be a subset of the axioms, or even
generalized axioms (similar to predicate generalization in verification).
We implemented our algorithm in a tool called Soft-Cegar that out-
performs state-of-the-art relational solvers Tuffy and Alchemy over
four real-world applications. We hope this work opens the door for further
collaboration between relational learning and SMT solvers.

1 Introduction

We propose using automated techniques developed in the verification community
to improve the efficiency of solving statistical relational learning problems. We
first introduce the relational learning problem, review existing solutions, and
then present our improvements.

Given data in the form of relations, relational learning involves inferring new
relationships that are likely present in the data. For instance, suppose that we are
given a set of bibliographic records downloaded from the Internet, and predicates
BibAuthor and BibTitle that associate a bibliographic record with its authors
and its title, respectively. Because there are variations in how different websites
abbreviate author names or paper titles (in addition to spelling mistakes), it may
not be immediately clear which records refer to the same paper. A relational
learning question is to infer which records (or authors or titles) are the same.

Such problems naturally involve an interplay between logic and probability.
Logic provides the tools to state our intuitions about how new relationships

can be derived from existing relationships. For example, we can represent the
statement “if two papers have the same authors and the same title, then the two
papers are the same” in logic using a formula F as follows:

∀a0a1b0b1t0t1.(SameAuthor(a0, a1) ∧ BibAuthor(a0, b0) ∧ BibAuthor(a1, b1)
∧ SameTitle(t0, t1) ∧ BibTitle(t0, b0) ∧ BibTitle(t1, b1))⇒ SameBib(b0, b1)

where SameAuthor,SameTitle and SameBib are the relations that we want to
infer. Probability, on the other hand, provides the tools to deal with incomplete-
ness of our models, uncertainty in the world, and errors in the data. Weighted
formulae combine both logic and probability. An example of a weighted formula
is 0.7 : F , where the weight 0.7 denotes our confidence in F , i.e., it is our estimate
of the probability with which a world satisfies F .

Existing state-of-the-art relational solvers are based on propositional logic.
Thus, “structural” constraints such as the fact that SameBib must be an equiv-
alence relation, are encoded using constraints with weight 1 (i.e., they must be
satisfied in any world):

Reflexivity: ∀b0. SameBib(b0, b0)
Symmetry: ∀b0b1. SameBib(b0, b1)⇒ SameBib(b1, b0)
Transitivity: ∀b0b1b2. SameBib(b0, b1) ∧ SameBib(b1, b2)

⇒ SameBib(b0, b2)

(1)

Similarly, the constraint that BibAuthor and BibTitle must encode functions that
associate the same author and title with each paper, is specified as follows:

∀a0a1b0b1. (SameBib(b0, b1) ∧ BibAuthor(a0, b0) ∧ BibAuthor(a1, b1))
⇒ SameAuthor(a0, a1)

∀t0t1b0b1. (SameBib(b0, b1) ∧ BibTitle(t0, b0) ∧ BibTitle(t1, b1))
⇒ SameTitle(t0, t1)

(2)

These constraints affect the scalability of relational solvers in two ways: First,
since variables in these formulae are usually universally quantified, and ex-
isting relational solvers use propositional logic, these constraints have to be
grounded [12,16] by instantiating the quantifiers over all constants in the dataset,
resulting in many constraints. Second, these are hard constraints that must be
satisfied, whereas the strength of relational solvers is in dealing with soft con-
straints (because the solvers are optimized to quickly find a good approximation
to the ideal result in which violation of some soft constraints is acceptable).

On the other hand, SMT solvers fit the job for precisely solving hard con-
straints. Moreover, they offer specialized theories that may already capture some
of the constraints implicitly. For instance, the fact that SameBib should be an
equivalence relation can be captured by defining it as SameBib(b0, b1) ≡ (f(b0) =
f(b1)), where f is some uninterpreted function and “=” is the interpreted equal-
ity relation. By leveraging the theory of uninterpreted functions with equality,
one can completely elide away the constraints of Formula 1 (and similarly for
Formula 2) when using SMT solvers.

2

Our algorithm proceeds as follows. Let F be a set of weighted constraints
such that F = A ∪ Fs, where A is the set of axioms. Let F0 = Fs. Inspired by
CEGAR (counterexample-guided abstraction refinement), we start by invoking an
underlying relational learner (like Tuffy or Alchemy) with the set of formulae
F0. Suppose the relational learner returns a world ω0. We then check which
axioms in A are violated by ω0 using SMT solvers, and selectively instantiate
axioms on the values of the relations from ω0 which witness these violations, and
add these axioms to F0 resulting in a larger set of formulae F1. Next, we invoke
the relational learner again with the larger set of formulae F1, and the iterative
process continues until we obtain a world ω̂ that satisfies all the axioms.

While CEGAR is very familiar to the program verification community, and
has been used extensively in model checking [1,2,6] and in SMT solvers based on
DPLL(T) [7, 8], our use of CEGAR for relational learning is new, and requires
overcoming several technical challenges.

First, we need to prove that lazily adding axioms does not affect the optimal-
ity of the relational learning solution. A key insight here is that satisfied axioms
do not contribute to the weight assigned to a world, whereas soft formulae do
(we formalize this in Section 2). As a result, if a world ω is optimal for a set of
constraints F and ω happens to satisfy all the axioms in A, then ω is also an
optimal world for the set of constraints F ∪A.

Second, we find that the iterative CEGAR process sometimes requires a large
number of iterations, each of which adds formulae forming particular patterns.
We propose a technique to detect these patterns and suitably generalize the
axioms that we add during refinement, thereby greatly reducing the number of
iterations needed for convergence.

We have implemented our relational learning algorithm in a tool called Soft-
Cegar and evaluated it on well-known applications. We show that Soft-Cegar
outperforms state-of-the-art statistical inference tools such as Tuffy [16] and
Alchemy [12], both in terms of efficiency and quality of results.

The rest of the paper is organized as follows. Section 2 describes prelim-
inaries and formally defines the problem. Section 3 defines the Soft-Cegar
algorithm and proves its correctness. Section 4 describes the empirical evalua-
tion of Soft-Cegar on four applications. Section 5 surveys related work, and
Section 6 concludes the paper.

2 Background: Statistical Relational Learning

We are interested in learning relations from a corpus of data given weighted
formulae as specifications. The weight of a formula is a real number in the
interval [0, 1] that is used to model our confidence in the formula. The corpus
of data is called evidence, which is an incomplete valuation of the relations. The
goal of relational learning is to complete the valuation of the relations and infer
a world in order to satisfy the specifications in an optimal manner.

The probabilistic models that we consider for relational learning problems
are Markov Logic Networks [20].

3

2.1 Markov Logic Network

Definition 1. A Markov Logic Network (MLN) L = 〈D,R,F〉 is a triple, where

– D = {D1, D2, . . .} is a set of finite domains.
– R = {R1, R2, . . .} is a set of relations over these domains. We assume the

existence of a function S that maps each relation in R to a schema. For
instance, S(R1) could be D1 ×D3 ×D5, which specifies that R1 is a three-
column relation and R1 ⊆ D1 ×D3 ×D5.

– F is a set of weighted formulae of the form:
{w1 : ∀x̄1.F1(x̄1), w2 : ∀x̄2.F2(x̄2), . . . , wn : ∀x̄n.Fn(x̄n)}, where each of the
wi ∈ [0, 1] are real numbers, and each Fi is a formula in the Domain Rela-
tional Calculus (DRC) [22] over universally quantified variables x̄i and the
relations in set R.

We generalize the schema function S to both variables and formulas. Given
a formula f = w : ∀x̄.F (x̄) ∈ F , where x̄ = x1 · · ·xn, we define S(xi, f) to be
the domain of xi in the formula, and S(F, f) to be S(x1)× · · · × S(xn). We will
drop the argument f when it is clear from the context.
In the Domain Relational Calculus (DRC), every relation R is viewed as a pred-
icate: ∀c̄ ∈ S(R) . R(c̄) ⇔ c̄ ∈ R. We now define the notion of formulae in a
DRC. A term is either a constant c or variable x. Atoms are defined as follows:

– If R is a predicate with arity k and t1, . . . , tk are terms, then R(t1, . . . , tk) is
an atom.

– If t1 and t2 are terms, then t1 Θ t2 is an atom, where Θ ∈ {=, 6=}.

Next, we define formulae as follows.

– Every atom is a formula.
– If F1 and F2 are formulae, then so are ¬F1, F1 ∨ F2, F1 ∧ F2 and F1 ⇒ F2.

Figure 1 shows an example MLN L = 〈D,R,F〉 for scheduling classes in a
Computer Science department. Section (1) is the Domain section which defines
the domains D or attributes of relations in the dataset. These are Course (set
of courses offered), Professor (set of professors in the department), Slot (set
of slots in a week) and Student (the set of students in the department).

Section (2) is the Relations section that defines the set of relations R of
interest in the dataset. These are defined as follows.

– Teaches(p, c): Professor p teaches a course c.
– Friends(s1, s2): Student s1 is a friend of student s2.
– Likes(s, p): Student s likes professor p.
– NextSlot(s1, s2): Slot s2 immediately follows slot s1.
– Attends(s, c): Student s attends course c.
– Popular(p): Professor p is popular.
– SameArea(c1, c2): Courses c1 and c2 are in the same subarea of computer

science.
– HeldIn(c, s): Course c is scheduled in slot s.

4

(1) Domains:
Course, Professor, Slot, Student
Course = {‘‘Algorithms and Complexity’’, ‘‘Medieval History of Machine Learning’’,...}
Professor = {‘‘Richard Karp’’, ‘‘C.A.R. Hoare’’, ...}
Slot = {‘‘Monday-Wednesday-Friday 9:00-10:00’’, ‘‘Tuesday-Thursday 9:00-10:30’’,... }
Student = { ‘‘Jay Leno’’, ‘‘David Letterman’’, ‘‘Bill Cosby’’, ... }

(2) Relations:
Teaches(Professor, Course), Friends(Student, Student), Likes(Student, Professor), NextSlot(Slot,
Slot)
Attends(Student, Course), Popular(Professor), SameArea(Course, Course), HeldIn(Course, Slot)

(3) Weighted formulae:
(* Axiom: Professors and Students cannot be in two places at once *)
1.0: ∀p1c1c2s2.Teaches(p1, c1) ∧ Teaches(p1, c2) ∧ HeldIn(c1, s1) ∧ HeldIn(c2, s2) ∧ c1 6= c2 ⇒ s1 6= s2
1.0: ∀s1c1c2r1r2.Attends(s1, c1)∧Attends(s1, c2)∧HeldIn(c1, r1)∧HeldIn(c2, r2)∧ c1 6= c2 ⇒ r1 6= r2

(* Axiom: SameArea is an equivalence relation *)
1.0: ∀c1c2.SameArea(c1, c1)
1.0: ∀c1c2.SameArea(c1, c2) ⇒ SameArea(c2, c1)
1.0: ∀c1c2c3.SameArea(c1, c2) ∧ SameArea(c2, c3) ⇒ SameArea(c1, c3)

(* Axiom: Friends is a symmetric relation *)
1.0: ∀s1s2.Friends(s1, s2) ⇒ Friends(s2, s1)

(* Soft formula: Prefer courses offered by professors you like, and those your friends are
taking *)
0.7 : ∀p1c1s1p1.Teaches(p1, c1) ∧ Likes(s1, p1) ⇒ Attends(s1, c1)
0.7 : ∀p1c1s1.Teaches(p1, c1) ∧ Popular(p1) ⇒ Attends(s1, c1)
0.7 : ∀s1s2c1.Friends(s1, s2) ∧ Attends(s1, c1) ⇒ Attends(s2, c1)

(* Soft formula: Take related courses in same area to gather expertise *)
0.7 : ∀s1c1c2.Attends(s1, c1) ∧ SameArea(c1, c2) ⇒ Attends(s1, c2)

(* Soft formula: Try to schedule classes students attend in consecutive slots
0.7 : ∀s1c1c2r1r2.Attends(s1, c1) ∧ Attends(s1, c2) ∧ c1 6= c2 ∧ HeldIn(c1, r1) ∧ HeldIn(c2, r2) ⇒
NextSlot(r1, r2) ∨ NextSlot(r2, r1)

(* Soft formula: Students tend to take courses in the same area *)
0.7 : ∀s1c1c2.Attends(s1, c1) ∧ Attends(s1, c2) ⇒ SameArea(c1, c2)
0.7 : ∀s1c1c2.Teaches(s1, c1) ∧ Teaches(s1, c2) ⇒ SameArea(c1, c2)

(* Soft formula: Professors are popular if several students like them *)
0.7 : ∀s1p1.Likes(s1, p1) ⇒ Popular(p1)

(4) Evidence:

(* complete values for the relations Teaches, Friends, Likes, and NextSlot*)

Teaches(‘‘Richard Karp’’, ‘‘Algorithms and Complexity Theory’’)

...

Friends(‘‘Jay Leno’’, ‘‘David Letterman’’)

...

Likes(‘‘Jay Leno’’, ‘‘Richard Karp’’)

...

NextSlot(‘‘Monday-Wednesday-Friday 9:00-10:00’’, ‘‘Monday-Wednesday-Friday 10:00-11:00’’)

NextSlot(‘‘Tuesday-Thursday 9:00-10:30’’, ‘‘Tuesday-Thursday 10:30-12:00’’)

...

Fig. 1. An MLN for a Computer Science department together with evidence.

5

Section (3) is the Weighted formulae section where all the axioms and soft
formulae in F are defined. Recall that axioms are formulae that must definitely
hold. The first two axioms state that professors and students cannot be in two
places at the same time. The next set of axioms encode the fact that the relation
SameArea is an equivalence relation. In other words, SameArea is a reflexive,
symmetric and transitive relation. Finally, we have an axiom that states that
the relation Friends is a symmetric relation. The first set of soft formulae specify
a student’s preference for courses offered by professors that she likes and for the
courses taken by her friends. All these formulae are associated with a weight or
confidence of 0.7. The next soft formula states that it is likely that students take
courses in the same area with the intention of gaining expertise in that area. We
also have a soft formula that tries to schedule classes for a student in consecutive
slots for the sake of convenience. We have a soft formula that groups two courses
into the same area if there are many students who take both courses. Finally, we
have a soft formula which says that professors are popular when there are many
students who like them.

Section (4) is the Evidence section that specifies known relations. The ev-
idence can be thought of as a hard constraint that fixes the values of certain
relations. In our dataset, the relations Teaches, Friends, Likes and NextSlot are
completely determined. In this example, we are interested in the HeldIn relation,
which is a schedule that assigns a course to a slot.

An axiom is a weighted formula with weight w ∈ {0, 1}. Axioms represent
formulae in an MLN that must be satisfied or violated. Let A(L) be the set of
axioms in an MLN L.

A world of an MLN L = 〈D,R,F〉 is an assignment of all relations in R
according to their schemas. Given a world u and a formula f with weight w, let
Φ(w, f) be w if u satisfies f , and (1 − w) otherwise. The weight of a world w,
which is an estimate of the likelihood of u is simply defined as:

∏
f∈F Φ(u, f). The

Maximum a Posteriori Probability estimate (MAP) is defined as the world with
maximum weight. It is possible for an MLN to have multiple MAP solutions; we
are only interested in finding one.

Remark. In the verification community, the more common optimization problem
is MAXSAT where the objective is to maximize the sum of weights of satisfied
constraints. If one replaces the weights in an MLN with their logarithms, then
solving MAXSAT over such an MLN is similar to computing its MAP. In other
words, it is possible to replace relational solvers with MAXSAT solvers. In this
paper, however, we only augment relational solvers with SMT solvers. A full
comparison of relational solvers to MAXSAT is an interesting direction that we
leave as future work.

Under this definition of MAP, we note that negating a weighted formula
w : ∀x̄.F (x̄) can be done in two ways:

1. Flip the weight, resulting in f1 = (1− w) : ∀x̄.F (x̄), or

2. Negate the formula, resulting in f2 = w : ∀x̄.¬F (x̄).

6

In other words, the formulae f1 and f2 are equivalent because using either does
not change the MAP. Notice that the universal quantifier does not change to an
existential quantifier.

Computing the MAP world of an MLN is NP-hard. However, there are a num-
ber of machine learning techniques that efficiently estimate the MAP solution
for an MLN given the evidence. For instance, the WalkSAT algorithm [9] that
forms the basis of many statistical relational learning tools [12, 16] is one such
technique.

The next section shows how we can exploit the distinction between axioms
and other soft formulae in MLNs to make exact and approximate MAP estima-
tion more scalable along with a potential for much improved precision.

3 The Soft-Cegar Algorithm

In this section, we describe an algorithm called Soft-Cegar for efficiently com-
puting the MAP for an input MLN L. Soft-Cegar provides a framework for
systematically combining any relational MAP inference algorithm with logical
inference algorithms that check consistency of the MAP solutions with respect
to the axioms defined by A(L).

We draw inspiration from the following key ideas in program verification
and theorem proving: (a) Counterexample-guided abstraction refinement (CE-
GAR) [6], (b) theorem proving [7], and (c) generalization techniques for accel-
erating convergence of the CEGAR loop [13].

Notation. For an axiom f = w : ∀x̄.F (x̄), let [|f |] be ∀x̄.F (x̄) if w = 1.0
and ∀x̄.¬F (x̄) if w = 0.0. For a set of axioms A, let [|A|] = ∧{[|f |] | f ∈ A}.
For two sets of axioms A1 and A2, we say that A1 entails A2, or A1 |= A2 if
([|A1|]⇒ [|A2|]) is valid. Note that if A1 = {1.0 : ∀x̄.F (x̄)} and A2 = {1.0 : F (c̄)}
for some c̄ ∈ S(x̄), then A1 |= A2.

The Soft-Cegar algorithm is described in Figure 2. The input to the algo-
rithm is an MLN L = 〈D,R,F〉 and its output is a world ωMAP that is a MAP
solution of L.

The CEGAR loop of the Soft-Cegar algorithm is described in lines 3–
24. The set Fapprox contains all weighted constraints of the MLN, except for its
axioms A(L). We use the set C to capture a subset of the axioms (or their ground
instances). Initially, C is empty and it grows iteratively inside the CEGAR loop.
The algorithm always maintains the invariant that A(L) |= C.

In line 4, an approximation Lapprox to the input MLN L is constructed. Note
that because C is entailed by A(L), Lapprox always has fewer (or same) number
of constraints compared to L. In the first iteration, Lapprox is the input MLN L
without any axioms. Next, in line 6, an off-the-shelf MAP solver Solvemap(Lapprox)
is invoked on the approximated MLN Lapprox. This results in a MAP world ωapprox

of the MLN Lapprox.
Lines 9–17 check whether ωapprox is consistent with the axioms A(L) of the

input MLN L. The set of conflicting axioms, i.e., axioms that are not satisfied
by ωapprox, are collected in C′. In lines 10–16, for every axiom w : ∀x̄.F (x̄), we

7

algorithm Soft-Cegar

input:
L = 〈D,R,F〉: MLN

output:
ωMAP: MAP solution

1: Fapprox := F \ A(L)
2: C := ∅
3: loop
4: Lapprox := 〈D,R,Fapprox ∪ C〉
5: (* Call relational MAP solver *)
6: ωapprox := Solvemap(Lapprox)
7: (* Find conflicting axioms *)
8: C′ := ∅
9: for each w : ∀x̄.F (x̄) ∈ A(L) do

10: if w = 1.0 then
11: T := IsConsistent(ωapprox,¬F)
12: C′ := C′ ∪ {1.0 : F (c̄) | c̄ ∈ T }
13: else
14: T := IsConsistent(ωapprox, F)
15: C′ := C′ ∪ {0.0 : F (c̄) | c̄ ∈ T })}
16: end if
17: end for
18: if C′ = ∅ then
19: ωMAP := ωapprox

20: return ωMAP

21: end if
22: C := C ∪ C′

23: C := Generalize(C, L)
24: end loop

Fig. 2. The Soft-Cegar algorithm.

algorithm Generalize

input:
C: a set of axioms L : MLN

parameters:
thresh: a floating point number

output:
G: a set of axioms such that A(L) |= G |=
C

1: G := ∅
2: for all φ ∈ A(L) do
3: let φ = 1.0 : ∀x̄F (x̄)
4: for all partial instantiations ψ of φ do
5: let covered := {f ∈ C | {ψ} |= {f}}
6: let support := |covered|/|S(F)|
7: if support > thresh then
8: (* Generalize *)
9: G := G ∪ {ψ}

10: C := C\covered
11: break
12: end if
13: end for
14: end for
15: return G ∪ C

Fig. 3. The Generalize algorithm.

compute a set of tuples T ⊆ S(F) in ωapprox that violate the axiom (recall that
S(F) is the product of the domains of the variables in F , as defined in Section
2). This is computed by the procedure IsConsistent called on lines 11 and 14.
This is essentially a call to an SMT solver. The set of conflict axioms C′ is the
set of all instances of the axiom w : ∀x̄.F (x̄) over the set of tuples T . This is
computed in lines 11 and 14.

If the set C′ is empty, this means that the current solution ωapprox respects all
axioms in A(L) and the procedure stops and returns ωMAP = ωapprox (line 20).
Otherwise, the set of weighted formulae is refined with C′ (line 22). It is easy to
see that A(L) |= C′ because the latter only contains ground instances of axioms.
Thus, when C is updated on line 22, we still have A(L) |= C.

In order to accelerate the convergence of the CEGAR loop, we make use of
a generalization procedure (line 23). One can use any procedure as long as it
satisfies the following condition: given argument C, it must return a set A such

8

that A(L) |= A |= C. Note that returning C itself is always a valid solution, but it
does not accelerate convergence. Similarly, returningA(L) is also a valid solution,
but this is too big a jump that may place a huge burden on the underlying solver.
The particular implementation of generalization that we use chooses a middle
ground. It is described in Figure 3 and the details will follow in Section 3.1.

Example. Consider the SameArea equivalence relation in Figure 1. Without the
axiom of transitivity present in Fapprox, a possible world of Lapprox (on line
7) may have both the tuples SameArea(“Static Analysis”, “Program Analysis”)
and SameArea(“Program Analysis”, “Abstract Interpretation”), but not the tu-
ple SameArea(“Static Analysis”, “Abstract Interpretation”). In this case, the set
of tuples T (on line 10) returned by the SMT solver contains the tuple c̄ =
(“Static Analysis”, “Program Analysis”, “Abstract Interpretation”), and the con-
flict F (c̄) added on line 11 is:
SameArea(“Static Analysis”, “Program Analysis”) ∧
SameArea(“Program Analysis”, “Abstract Interpretation”)
⇒ SameArea(“Program Analysis”, “Abstract Interpretation”)

This axiom prevents the MAP solver from choosing such a world in future iter-
ations.

A property of the Soft-Cegar algorithm is that the laziness does not cause
us to sacrifice precision. This is because satisfied axioms do not contribute to
the weight assigned to a world. Thus, as long as all the axioms are satisfied,
the weight of a world in an MLN with or without axioms is the same. We still
need to establish that there is no other world that can satisfy all the axioms
and have a higher weight. Assuming that the underlying relational learner is
optimal, we can argue that such a situation cannot arise. Below, we exploit this
natural separation that exists between soft formulas and axioms to show that
the Soft-Cegar algorithm is able to compute an exact MAP solution, i.e., a
world with the maximum weight.

Theorem 1. The Soft-Cegar algorithm returns an exact MAP solution pro-
vided the MAP solver Solvemap always returns exact MAP solutions.

Proof: For simplicity, assume that axioms always have the weight 1.0 (otherwise,
replace the axiom 0.0 : ∀x̄.F (x̄) with 1.0 : ∀x̄.¬F (x̄)). Recall the definition of
the weight of a world from Section 2. Define the weight of an MLN to be the
weight of its MAP solution, i.e., the maximum possible weight of a world in the
MLN. Consider two MLNs L1 = 〈D,R,F ∪ C1〉 and L2 = 〈D,R,F ∪ C2〉 such
that all the formulae in C1 and C2 are axioms with weight 1.0 and C2 |= C1. Then
weight(L1) ≥ weight(L2) because:

A. Let ω be a world with weight w 6= 0 in L2. Then ω must satisfy C2. Because
C2 entails C1, ω satisfies C1. Because L1 and L2 have the same set of weighted
constraints (barring axioms), the weight of ω in L1 must also be w.

B. Let u be a MAP of L2, i.e., its weight in L2 is weight(L2). From A, the weight
of u in L1 is also weight(L2). (Nothing to prove if weight(L2) = 0.)

9

C. If there is a world with weight w in L1 then, by definition, weight(L1) ≥ w.
Thus, from B, weight(L1) ≥ weight(L2).

Next, if u′ is a MAP of L1 and u′ satisfies C2, then the weight of u′ in L2 is
weight(L1). This implies weight(L1) = weight(L2) and u′ is a MAP of L2.

The proof of the theorem follows from these observations. Let L1 be the
MLN Lapprox on the last iteration of the Soft-Cegar algorithm. Then L1 is
〈D,R,Fapprox ∪ C〉 for some C that is accumulated in the various iterations of
the loop. And the input MLN L can be written as L2 = 〈D,R,Fapprox ∪ A(L)〉.
Because A(L) |= C, when C′ = ∅ on line 20 we know that ωapprox satisfies all the
axioms A(L). In this case, the MAP solution of L1 must be an MAP solution of
L2.

Theorem 1 assumes that the underlying MAP solver is exact. In practice, exist-
ing MAP solvers are based on probabilistic and approximation algorithms and
cannot handle axioms precisely. As we show in the next section, even with these
imprecise MAP solvers, Soft-Cegar’s ability to handle axioms specially allows
it to improve both runtime and precision of the inference.

3.1 Generalization

In this section, we describe the generalization procedure Generalize employed
by Soft-Cegar. As in program verification, the goal of generalization is to re-
duce the number of CEGAR iterations needed, while not imposing a huge burden
on the underlying solver. We first work through an example.

Consider the course scheduling MLN from Figure 1. We assume that the
following facts are part of the world ωapprox in some arbitrary iteration i of
Soft-Cegar.

Attends(Student1,Course1) HeldIn(Course1, Slot1)
Attends(Student1,Course3) HeldIn(Course3, Slot1)

This world violates the following axiom that states that students cannot be in
two places at the same time.

1.0 : ∀s1c1c2r1r2.Attends(s1, c1) ∧ Attends(s1, c2)∧
HeldIn(c1, r1) ∧ HeldIn(c2, r2) ∧ c1 6= c2 ⇒ r1 6= r2

In order, to rule out this world ωapprox, the following conflict axiom is added
to the set of weighted formulae for the approximate MLN in next iteration of
Soft-Cegar.

1.0 : ¬Attends(Student1,Course1) ∨ ¬Attends(Student1,Course3) ∨
¬HeldIn(Course1, Slot1) ∨ ¬HeldIn(Course3, Slot1)

However, resolving conflicts at such a fine granularity might be lead to a pro-
hibitively large number of iterations and as a result, the following facts that
violate the same axiom above might show up in worlds computed by subsequent
iterations of Soft-Cegar.

10

i Attends(Student1,Course1) Attends(Student1,Course3)
HeldIn(Course1, Slot1) HeldIn(Course3, Slot1)

i + 1 Attends(Student2,Course1) Attends(Student2,Course3)
HeldIn(Course1, Slot1) HeldIn(Course3, Slot1)

i + 2 Attends(Student3,Course1) Attends(Student3,Course3)
HeldIn(Course1, Slot1) HeldIn(Course3, Slot1)

i + 3 Attends(Student4,Course1) Attends(Student4,Course3)
HeldIn(Course1, Slot1) HeldIn(Course3, Slot1)

Furthermore, it is possible that this sequence of conflict axioms could continue
for many iterations. There could be several reasons for this behavior such as
the popularity of Course1 and Course3. Therefore, we would like to find a more
“general” conflict axiom that entails many possible conflict axioms in future
iterations so as to reduce the overall number of iterations of Soft-Cegar. For
instance, each of the following two axioms rule out all of the violating facts
mentioned before.

1.0 : ∀x.¬Attends(x,Course1) ∨ ¬Attends(x,Course3)∨
¬HeldIn(Course1, Slot1) ∨ ¬HeldIn(Course3, Slot1)

1.0 : ∀xy.¬Attends(x, y) ∨ ¬Attends(x,Course3)∨
¬HeldIn(y, Slot1) ∨ ¬HeldIn(Course3, Slot1)

In general, there can be many choices of generalized axioms. We have to balance
the amount of generalization with the number of iterations.

Our generalization algorithm searches over the space of partial instantiation
of axioms. A partial instantiation of an axiom is one in which some (or all) of
the quantified variables of the axiom are ground to particular constants. For
instance, 1.0 : ∀xz.F (x, c, z) is a partial instantiation of 1.0 : ∀xyz.F (x, y, z),
where c ∈ S(y). An abstract description of our algorithm is shown in Figure 3.
It is controlled by a threshold value thresh that lies between 0 and 1. The algo-
rithm works by searching over the space of all partial instantiations of axioms,
looking for one with a support higher than thresh. Here, support of an axiom
f is defined as the fraction of formulae in C that entail f , divided by its total
number of instantiations. (The division prevents over generalization.) If one such
instantiation is found, we add it to G and remove the covered axioms from C.

Soft-Cegar uses an efficient implementation of this algorithm. It uses a
thresh value obtained by training the algorithm on small datasets.

4 Evaluation

In this section, we describe our implementation of Soft-Cegar and compare it
with two state-of-the-art relational learning engines Alchemy [12] and Tuffy [16]
on four real world applications. All experiments were performed on a 2.66 GHz
Intel Xeon quad core processor system with 16 GB RAM running Microsoft
Windows Server 2008. Soft-Cegar is implemented in F# and uses the Post-
greSQL 8.4 RDBMS engine for storing and manipulating relations. The imple-
mentation of Soft-Cegar uses Tuffy as the underlying relational MAP solver

11

(implementation of Solvemap subroutine in Figure 2). We consider four real-world
applications for our evaluation.

Advisor Recommendation (AR). The MLN for this application specifies
a recommendation system for starting graduate students that helps them find
good PhD advisors. This recommendation is made based on the interests of stu-
dents (expressed using the Likes(Person, Paper) relation) and weighted formulae
such as “prefer an advisor who has graduated a student in an area of interest”.
The axioms consists of rules such as “the advisor should have had at least one
student who is the first author of a paper”, in addition to axioms that spec-
ify the theory of equality used to discover equivalence classes over papers. The
dataset (AIDB) for this application was created from the AI genealogy project
(http://aigp.eecs.umich.edu) for advisor-student relationships and DBLP
(http://dblp.uni-trier.de) for bibliographic information. This dataset con-
sists of information about 25 researchers and 600 papers.

Entity Resolution (ER) [23]: This is the problem of identifying duplicate enti-
ties in a database. We use the Cora dataset [3] (available at http://alchemy.cs.
washington.edu/data/cora) that consists of 1295 citations and 132 distinct
research papers for our experiments. The objective is to find identical authors,
venues, titles and citations in the database. The MLN for this task is described
in (http://alchemy.cs.washington.edu/mlns/er). Since this is essentially a
classification problem, most of the axioms in the MLN are those specifying an
equivalence relation.

Information Extraction (IE) [18]: The task for this application is to extract
database records from text or semi-structured sources. In our experiment, we use
the Cora dataset and the MLN (available at http://alchemy.cs.washington.
edu/mlns/ie) specifies extraction of author, title and venue fields from this bib-
liographic dataset. The axioms in this MLN specify the theory of uninterpreted
functions [4].

Relational Classification (RC) [16]: In this application, papers in the dataset
are classified based on categories of papers published by same authors. The ax-
ioms in this MLN specify the theory of equality and uninterpreted functions [4].

The statistics for these four applications (MLNs) and their corresponding
datasets is shown in Table 1.

Experiments. Table 2 summarizes the results obtained by running Soft-
Cegar, Tuffy and Alchemy over the four applications. The runtime is in
minutes:seconds and the cost of a world ω is proportional to negative log of its
weight (minimizing this quantity is equivalent to finding the MAP solution).

The rows for Soft-Cegar, Tuffy and Alchemy in Table 2 report the
runtimes and solution costs obtained by running these tools over the four appli-
cations. The “*” entries in the table correspond to an out-of-memory exception
result. For instance, Tuffy runs out of memory on the AR application (after 4
hours), while Alchemy runs out of memory on the IE and RC applications (af-
ter 18 hours). On the other hand, Soft-Cegar completes and quickly produces

12

AR ER IE RC
#relations 14 14 19 5
#formula 24 3.8K 1.1K 32
#axioms 6 7 3 2
#atoms 88K 20K 81K 9860

#evidence-atoms 65K 676 613K 430K
#query-atoms 188 400 400 400

Table 1. Application MLN and dataset
statistics.

Method Iterations Time Solution Cost

Advisor Recommendation
Soft-Cegar 18 06:44 3669.50

Tuffy 1 - *
Alchemy - - *

Entity Resolution
Soft-Cegar 8 13:06 28112.24

Tuffy 1 15:13 34416.97
Alchemy 1 16:17 5287838.62

Information Extraction
Soft-Cegar 3 17:46 109.40

Tuffy 1 55:49 3944.29
Alchemy - - *

Relational Classification
Soft-Cegar 2 05:00 870.37

Tuffy 1 05:42 874.63
Alchemy - - *

Table 2. Empirical evaluation of Soft-
Cegar.

Fig. 4. Cost of solution vs. time for ER
on the Cora dataset.

Fig. 5. Number of axioms vs. number of
iterations for ER on the Cora dataset.

a result on all applications. On the applications where Tuffy and Alchemy
terminate and produce a result, it is important to also note that Soft-Cegar
produces solutions which are superior (lower cost) in terms of quality. This em-
pirically supports our intuition that reducing the axiom burden on a relational
solver via CEGAR can lead to improvements in efficiency as well as precision.

Figure 4 plots solution cost vs. time for Soft-Cegar, Tuffy and Alchemy
on the ER application over the Cora dataset. We have three curves for Soft-
Cegar, one for each thresh = 0.001, thresh = 0.005 and thresh = 0.01, where
thresh is a parameter that controls the degree of generalization. A lower value
of thresh corresponds to more generalization and therefore better acceleration
of the CEGAR loop. It can be seen for all curves that the solution cost decreases
with time and that Soft-Cegar performs much better than both Tuffy and
Alchemy. It can also be seen from Figure 5 that the rate of addition of axioms
decreases with increase in values of thresh. Note that that Soft-Cegar results
in lower cost solutions, validating our intuition that reducing the burden on the
relational MAP solver via lazy addition of axioms can also improve the quality

13

of the results. As expected, Tuffy performs much better than Alchemy for
this application and this is consistent with the results reported in [16].

For the IE application, Soft-Cegar completes in 3 iterations and this can be
attributed to effective generalization which also results in a more precise solution
than Tuffy. For the RC application, Soft-Cegar completes in two iterations
and this is due to a small number of axioms in this application.

5 Related Work

Several optimizations for scaling statistical relational learning tools have been
proposed recently. Lifted inference [5, 15, 17] exploits the structure of graphical
models to efficiently perform message passing and compute marginal probabil-
ities. In particular, subsets of components that will send and receive identical
messages during belief propagation are identified and grouped together for effi-
ciency. Lazy inference [19] exploits the observation that most variables in inferred
worlds typically have default values (a value that is much more frequent than the
others). Thus, we can save both time and memory by assuming that almost all
of variables have default values, and gradually refine the variables whose values
need to be changed to get an optimum score. Lazy inference generalizes earlier
work on Lazy-WalkSAT [24]. Lazy grounding approaches have been devised to
deal with the size of domains, which are typically very large, by lazily adding
constants to be considered from each domain, on demand. Coarse-to-fine infer-
ence [10] groups constants from domains into types and refines the types progres-
sively to get better scores for the inferred solution. Cutting plane inference [21]
starts with a partial grounding (which considers only a subset of constants from
each domain) with a partial score, and iteratively ascertains which constants
to add to the grounding so as to improve the score of the inferred solution.
The Tuffy [16] tool uses relational database techniques to efficiently perform
grounding and avoid constructing groundings that do not matter for calculating
the score of the final inferred world.

Our technique for handling axioms lazily is complementary and orthogo-
nal to all these existing optimizations. Tools for relational learning such as
Alchemy [12] and Tuffy [16] are publicly available with benchmark suites.
Our work was inspired by trying out these tools on these benchmark suites, and
observing that CEGAR techniques can significantly improve the performance of
these tools. We have implemented our CEGAR based relational learning algo-
rithm in a tool called Soft-Cegar using Tuffy as the underlying relational
learner. Tuffy is the most recent optimized relational learning solver, and it
incorporates all the optimizations mentioned above from the relational learn-
ing community. Our experimental results show that Soft-Cegar outperforms
Tuffy, giving empirical evidence that lazily instantiating axioms with CEGAR
gives substantial gains over and above all the above optimizations. In addition,
our work enables enriching the language of relational learning tools with SMT
theory reasoning. Though all our current examples use only the EUF theory,

14

our algorithm works with other theories such as linear arithmetic, which are not
currently available in relational learners.

6 Conclusion

Inspired by the wide use of CEGAR (Counterexample Guided Abstraction Re-
finement) in program verification, we proposed a technique to lazily add axioms
in the context of statistical relational inference. We proved that the technique
is guaranteed to yield optimal answers assuming that the underlying relational
learner is optimal (Theorem 1). In practice, even though existing statistical re-
lational learners use heuristics, and are far from being optimal, we empirically
validated that our lazy addition of axioms greatly improves both their runtime
and the quality of their solution. The current implementation of our algorithm
uses an existing relational learner as a blackbox, and is able to make use of all the
orthogonal and complementary optimizations that have been already developed
and implemented in existing relational learning tools.

We see several avenues for future work. Our CEGAR framework can be used to
add expressiveness to the formulae used in relational learning. In particular, it is
possible to integrate theories supported by SMT solvers such as linear arithmetic
and provide a more expressive language of formulas for MLNs. This would enable
inference to infer constants in the solution that are not present in the evidence
or in the domains. While the optimality provided by Theorem 1 is easy to prove
for finite domains with such an extension, more work is needed to guarantee
optimality and handle infinite domains. Another direction worth exploring is
the problem of learning axioms from data using logical reasoning algorithms,
inspired by recent approaches proposed to infer the structure of graphical models
from data [11,14].

References

1. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In Principles of Programming Languages (POPL 2002), pages 1–3,
2002.

2. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. “The Software Model
Checker Blast”. STTT: International Journal on Software Tools for Technology
Transfer, 9(5-6):505–525, 2007.

3. M. Bilenko and R. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In Knowledge Discovery and Data Mining (KDD 2003), pages
39–48, 2003.

4. A. R. Bradley and Z. Manna. The Calculus of Computation: Decision Procedures
with Applications to Verification. Springer-Verlag, 2007.

5. R. Braz, E. Amir, and D. Roth. Lifted first-order probabilistic inference. In
International Joint Conference on Artificial Intelligence (IJCAI 2005), pages 1319–
1325, 2005.

6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification (CAV 2000), pages 154–
169, 2000.

15

7. L. de Moura and N. Bjorner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2008), pages 337–340, 2008.

8. C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy proof
explication. In Computer Aided Verification (CAV 2003), pages 355–367, 2003.

9. H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving
problems with hard and soft constraints. In D. Gu, J. Du, and P. Pardalos, editors,
The Satisfiability Problem: Theory and Applications, pages 573–586. AMS, 1997.

10. C. Kiddon and P. Domingos. Coarse-to-fine inference and learning for first-order
probabilistic models. In National Conference on Artificial Intelligence (AAAI
2011), 2011.

11. S. Kok and P. Domingos. Learning the structure of Markov logic networks. In
International Conference on Machine Learning (ICML 2005), pages 441–448, 2005.

12. S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domingos.
The Alchemy system for statistical relational AI. Technical report, University of
Washington, 2007. http://alchemy.cs.washington.edu.

13. K. L. McMillan. Interpolation and SAT-based model checking. In Computer Aided
Verification (CAV 2003), pages 1–13, 2003.

14. L. Mihalkova and R. Mooney. Bottom-up learning of Markov logic network struc-
ture. In International Conference on Machine Learning (ICML 2007), pages 625–
632, 2007.

15. B. Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes, and L. P. Kaelbling. Lifted
probabilistic inference with counting formulas. In National Conference on Artificial
Intelligence (AAAI 2008), pages 1062–1068, 2008.

16. F. Niu, C. Re, A. Doan, and J. Shavlik. Tuffy: Scaling up statistical inference in
Markov logic networks using an RDBMS. In International Conference on Very
Large Data Bases (VLDB 2011), 2011.

17. D. Poole. First-order probabilistic inference. In International Joint Conference on
Artificial Intelligence (IJCAI 2003), pages 985–991, 2003.

18. H. Poon and P. Domingos. Joint inference in information extraction. In National
Conference on Artificial Intelligence (AAAI 2007), pages 913–918, 2007.

19. H. Poon, P. Domingos, and M. Sumner. A general method for reducing the com-
plexity of relational inference and its application to mcmc. In National Conference
on Artificial Intelligence (AAAI 2008), 2008.

20. M. Richardson and P. Domingos. Markov logic networks. Machine learning, 62:107–
136, 2006.

21. S. Riedel. Cutting plane map inference for Markov logic. In Statistical Relational
Learning (SRL 2009), 2009.

22. A. Silberschatz, H. Korth, and S. Sudarshan. Database Systems Concepts.
McGraw-Hill, Inc., 5 edition, 2006.

23. P. Singla and P. Domingos. Entity resolution with Markov logic. In International
Conference on Data Mining (ICDM 2006), pages 572–582, 2006.

24. P. Singla and P. Domingos. Memory-efficient inference in relational domains. In
National Conference on Artificial Intelligence (AAAI 2006), pages 488–493, 2006.

16

